DOI QR코드

DOI QR Code

지상 송신원 항공 전자 탐사 1차원 모델링

One-dimensional Modeling of Airborne Transient Electromagnetic using a Long Grounded-wire Source

  • 조인기 (강원대학교 지질.지구물리학부) ;
  • 김래영 (강원대학교 지질.지구물리학부) ;
  • 이명종 (한국지질자원연구원 광물자원연구부)
  • Cho, In-Ky (Division of Geology and Geophysics, Kangwon National University) ;
  • Kim, Rae-Yeong (Division of Geology and Geophysics, Kangwon National University) ;
  • Yi, Myeong-Jong (Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources)
  • 투고 : 2015.11.13
  • 심사 : 2015.11.25
  • 발행 : 2015.11.30

초록

항공 전자 탐사법은 지하 천부의 전도성 광체 탐사를 위하여 이미 수십년 전에 도입되었다. 그러나 통상적인 시간 영역 항공 전자 탐사(ATEM) 시스템은 신호가 미약하여 가탐 심도에 한계가 있다. 최근 이러한 문제점을 극복하기 위하여 지상 송신원 시간 영역 항공 전자 탐사법(GREATEM)이 개발되었다. GREATEM은 지상에 설치된 긴 전선을 송신원으로 사용하는 준 항공 전자 탐사법이다. 항공 전자 탐사에서는 방대한 자료가 획득되므로, 계산 시간의 절감을 위하여 대개 1차원 해석 방법이 사용되고 있다. 그러나 GREATEM은 1차원 모델링의 경우에도 긴 전선을 따라 수치 적분이 필요하므로 루프 송신원을 사용하는 ATEM의 1차원 모델링에 비하여 계산 시간이 많이 걸린다는 문제점이 있다. 이 논문에서는 일반적인 1차원 모델링보다 비교할 수 없을 정도로 계산 속도가 빠른 ABFM법을 도입하여 ATEM 1차원 모델링을 수행하였다. 통상적인 모델링과 ABFM 결과를 비교한 결과, ABFM법은 GREATEM 1차원 모델링에도 적용 가능할 것으로 확인되었다.

Airborne transient electromagnetic (ATEM) surveying was introduced several decades ago in the mining industry to detect shallow conductive targets. However, conventional ATEM systems have limited depth of investigation because of weak signal strength. Recently, the grounded electrical source airborne transient electromagnetic (GREATEM) system was proposed to increase the depth of investigation. The GREATEM is a semi-airborne transient electromagnetic system because a long grounded wire is used as the transmitter. Traditionally, ATEM sounding data have been interpreted with 1D earth models to save the computing time because modern ATEM systems generally collect large data sets. However, the GREATEM 1D modeling requires numerical integration along the wire, so it takes much more time than the 1D modeling of conventional ATEM. In this study, the adaptive Born forward mapping (ABFM) was applied to the ATEM 1D modeling because the ABFM is incommensurably faster than the ordinary GREATEM 1D modeling. Comparing the results from ordinary and ABFM 1D modeling, it was confirmed that the ABFM can be applied to the 1D modeling of GEATEM.

키워드

참고문헌

  1. Anderson, W. L., 1975, Improved digital filters for evaluating Fourier and Hankel transform integrals, NTIS Rep. PB-242-800, National Technical Information Service, U.S. Dep. of Commerce, Spring field, Va.
  2. Christensen, N. B., 2002, A generic 1-D imaging method for transient electromagnetic data, Geophysics, 67, 438-447. https://doi.org/10.1190/1.1468603
  3. Christensen, N. B., Reis, E., and Halkjaer, M., 2009, Fast, laterally smooth inversion of airborne time-domain electromagnetic data, Near Surface Geophysics, 7, 599-612.
  4. Elliott, P., 1998, The principles and practice of FLAIRTEM, Exploration Geophysics, 29, 58-60. https://doi.org/10.1071/EG998058
  5. Gunderson, B. M., Newman, G. A., and Hohmann, G. W., 1986, Three-dimensional transient electromagnetic responses for a grounded source, Geophysics, 51, 2117-2130. https://doi.org/10.1190/1.1442064
  6. Mogi, T., Kusunoki, K., Kaieda, H., Ito, H., Jomori, A., Jomori, N., and Yuuki, Y., 2009, Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan, Exploration Geophysics, 40, 1-7. https://doi.org/10.1071/EG08115
  7. Mogi, T., Tanaka, Y., Kusunoki, K., Morikawa, T., and Jomori, A., 1998, Development of grounded electrical source airborne transient EM (GREATEM), Exploration Geophysics, 29, 61-64. https://doi.org/10.1071/EG998061
  8. Rabb, F., and Frischknecht, F., 1983, Desktop computer processing of coincident and central loop time domain electromagnetic data, USGS Open-File Report 83-240.
  9. Smith, R. S., Annan, A. P., and McGowan, P. D., 2001, A comparison of data from airborne, semi-airborne and ground electromagnetic systems, Geophysics, 66, 1379-1385. https://doi.org/10.1190/1.1487084
  10. Spies, B. R., and Eggers, D. E., 1986, The use and misuse of apparent resistivity in electromagnetic method, Geophysics, 51, 1462-1471. https://doi.org/10.1190/1.1442194
  11. Spies, B. R., and Raiche, A. P., 1980, Calculation of apparent conductivity for the transient electromagnetic (coincident loop) method using an HP-67 calculator, Geophysics, 45, 1197-1204. https://doi.org/10.1190/1.1441117
  12. Ward, S. H., and Hohmann, G. W., 1987, Electromagnetic theory for geophysical applications, in Electromagnetic method in Applied Geophysics, SEG, 1-132.