DOI QR코드

DOI QR Code

Electrical Resistivity at Room Temperature and Relation between Physical Properties of Core Samples from Ulleung Island

울릉도 시추 코어의 상온 전기비저항과 물성 간의 상관성

  • Lee, Tae Jong (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Sang Kyu (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yun, Kwan-Hee (Korea Electric Power Research Institute (KEPRI))
  • Received : 2015.09.14
  • Accepted : 2015.10.12
  • Published : 2015.11.30

Abstract

Electrical resistivity of 23 core samples from Ulleung Island at dry or saturated condition has been measured along with dry density and effective porosity, and the relations between the properties has also been discussed. Upper and lower bounds of electrical resistivity at room temperature can be provided by the dry- and saturated-resistivity, respectively. Injecting nitrogen gas to the pore space at the very end of drying process can prevent humid air from getting into the pore space, so that measurement of dry-resistivity can be less affected by humidity in the air. Dry density and porosity have very close correlation; the ratio between increase of porosity and the decrease of density showed distinct relation to the rock types, such that basaltic rocks showed higher ratio while trachytic rocks showed lower. Saturated resistivity showed close correlation to density and effective porosity of the rock sample, while dry resistivity didn't.

울릉도 지열조사 시추공에서 채취한 암석코어 중 약 20 m 간격으로 수집한 23개의 코어시료에 대하여 수포화 전기비저항과 건조 전기비저항, 건조밀도와 유효공극률을 측정하고, 암석코어 별 전기비저항 범위를 제시하였으며 물성간 상관성을 분석하였다. 암석코어의 건조과정 말미에 질소가스를 주입함으로써 습기의 공극내 유입 및 흡착을 지연시켜 건조 전기비저항을 측정할 수 있는 전처리 방법을 고안하였다. 측정된 물성 상호간의 상관성을 분석한 결과, 울릉도 암석코어의 건조밀도는 유효공극률과 매우 높은 상관성을 보였는데, 특히 '건조밀도 감소에 대한 유효공극률 증가율'이 암종에 따라서 큰 차이를 보여서 현무암질 화산쇄설암이 가장 크고 조면암질 화산쇄설암, 조면암의 순으로 작아진다. 따라서 울릉도 암석코어는 건조밀도와 유효공극률의 상관성 분석만으로도 암종 구별이 용이한 특징을 나타내었다. 수포화 전기비저항은 유효공극률 및 건조 밀도와 매우 높은 상관성을 보이는 반면 건조 전기비저항은 이들과 특별한 상관관계를 찾을 수 없었다.

Keywords

References

  1. Arnason, K., Karlsdottir, R., Eysteinsson, H., Flovenz, O. G., and Gudlaugsson, S. T., 2008, The resistivity structure of high-temperature geothermal systems in Iceland, Short Course III on Exploration for Geothermal Resources at Lake Naivasha, Kenya, Oct.24-Nov.17, 2008.
  2. Fiordelisi, A., Mackie, R., Madden, T., Manzella, A., and Rieven, S., 1995, Application of magnetotelluric method using a remote-remote-reference system for characterising deep geothermal system, Proc. of World Geothermal Congress 2, 893-898.
  3. Knight, R., 1991, Hysteresis in the electrical resistivity of partially saturated sandstones, Geophysics, 56, 2139-2147. https://doi.org/10.1190/1.1443028
  4. Lee, T. J., Song, Y., and Uchida, T., 2007, Three-dimensional magnetotelluric surveys for geothermal development in Pohang, Korea, Exploration Geophysics, 38, 89-97. https://doi.org/10.1071/EG07004
  5. Lee, S. K., and Lee, T. J., 2008, "Electrical resistivity versus water contents of core samples from a geothermal borehole in Pohang, Korea," J. of the Korean Society of Mineral and Energy Resources Engineers, 45, 526-535.
  6. Lee, T. J., Nam, M. J., Lee, S. K., Song, Y., and Uchida, T., 2009, The Jeju dataset: three-dimensional interpretation of MT data from mid-mountain area of Jeju Island, Korea, Journal of Applied Geophysics, 68, 171-181. https://doi.org/10.1016/j.jappgeo.2008.11.006
  7. Lee, T. J., Han, N., and Song, Y., 2010, Magnetotelluric survey applied to geothermal exploration: An example at Seokmo Island, Korea, Exploration Geophysics, 41, 61-68. https://doi.org/10.1071/EG10001
  8. Lee, T. J., and Lee, S. K., 2014, "Characteristics of electrical resistivity of dry sandstone with respect to temperature and humidity," J. of the Korean Society of Mineral and Energy Resources Engineers, 51, 30-40.
  9. Lee, S. K., Lee, T. J., and Park, S. G., 2014, Apparatus for measuring submerged mass and method for measuring submerged mass using therof, Rep. of Korea patent 10-1382251.
  10. Lee, S. K., Lee, T. J., and Yi, M.-J., 2015, Resistivity monitoring of saturated rock cores at room temperature, Geophysics and Geophysical Exploration, 18, 1-10. https://doi.org/10.7582/GGE.2015.18.1.001
  11. Longeron, D. G., Argaud, M. J., and Feraud, J. P., 1989, Effect of overburden pressure and the nature of microscopic distribution of fluids on electrical properties of rock samples, SPE Form. Eval., 4, 194-202. https://doi.org/10.2118/15383-PA
  12. Nam, M. J., Kim, H. J., Song, Y., Lee, T. J., and Suh, J. H., 2009, Three-dimensional topographic and bathymetric effects on magnetotelluric responses in Jeju Island, Korea, Geophysical Journal International, 176, 457-466. https://doi.org/10.1111/j.1365-246X.2008.03993.x
  13. Roberts, J. J., and Lin, W., 1997, Electrical properties of partially saturated Topopah Spring Tuff: Water distribution as a function of saturation, Water Resources Research, 33, 577-587. https://doi.org/10.1029/96WR03905
  14. Yun, K.-H., Shim, J.-T., Jung, E.-J., Lee, T. J., Jeong, H.-S., and Kim, K.-H., 2015, Assessment of deep geothermal resources for geothermal power generation in Ulleung Island, Proceeding, spring meeting of Korean Society for New and Renewable Energy, 109.

Cited by

  1. Thermal Conductivity Measurement of Rock Cores from Ulleung Island Using PEDB System at Room Temperature vol.19, pp.3, 2016, https://doi.org/10.7582/GGE.2016.19.3.121