DOI QR코드

DOI QR Code

Heavy Metals in Surface Sediments from Doam Bay, Southwestern Coast of Korea

한국 남서해안 도암만 표층퇴적물의 중금속 함량 및 분포 특성

  • CHO, HYEONG-CHAN (Department of Marine Resources, Mokpo National University) ;
  • CHO, YEONG-GIL (Department of Marine Resources, Mokpo National University)
  • 조형찬 (목포대학교 해양자원학과) ;
  • 조영길 (목포대학교 해양자원학과)
  • Received : 2015.09.24
  • Accepted : 2015.11.10
  • Published : 2015.11.30

Abstract

Forty-four surface sediments from Doam Bay were analyzed for total organic carbon (TOC), total nitrogen (TN), total metal (Al, Fe, Mn, Cr, Cu, Ni, Pb, Zn) and further chemical partitioning of metals were carried out in some samples. The TOC (0.32~3.10%) and TN (0.03~0.26%) values of the samples were similar to those of other coastal area. The C/N ratios ranged from 7.9 to 11.9 with an average 9.3 which revealed that contribution of terrestrial organic matters was relatively rare. Contents of analysed metals showed a level lower than threshold effects level (TEL) in sediment quality guidelines. Based on the chemical speciation of metals, the lattice fractions were found in the order Cr > Cu > Ni > Zn > Pb > Mn, while Mn and Pb are the ratio of the non-lattice fractions accounted for more than 50%. The average baseline values were obtained relative cumulative frequency curves and linear regression analysis. The respective baseline concentrations for Cu, Ni, Pb, Zn, Cr and Mn were 11.8, 23.1, 26.8, 76.6, 56.7, 585 mg/kg, respectively. Based on geoaccumulation index ($I_{geo}$) with a baseline values of Mn showed that face the contamination phase from estuarine stations. However, in case of Zn and Pb, although there is no sign of contamination, it could be release from sediment when there is a change in the environment, which is caused from the high ratio of non-lattice fractions.

한국 남서해 연안의 도암만에서 44개 표층퇴적물을 채취하여 총유기탄소(TOC), 총질소(TN) 및 중금속(Al, Fe, Mn, Cr, Cu, Ni, Pb, Zn)을 분석하였으며, 11개 시료에 대해서는 화학적 존재형태별 분석을 병행하였다. TOC(0.32~3.10%), TN(0.03~0.26%)은 주변 해역의 평균 수준이었고, C/N 비(7.9~11.9)에 근거할 때 육상기원 유기물의 영향이 반영된 일부 지역이 구분되었다. 중금속 함량은 대부분의 정점에서 해양퇴적물 주의기준(TEL) 이하였고, 화학적 존재형태별 함량은 광물격자부분에서 Cr, Cu, Ni 등이, 비광물격자부분에서 Mn, Pb가 총량의 절반을 상회하였다. 연구지역의 중금속 배경농도를 누적빈도곡선과 선형회귀분석에 의해 추정한 결과 Cu=11.8, Ni=23.1, Pb=26.8, Zn=76.6, Cr=56.7, Mn=585 mg/kg으로 계산되었으며, 이를 바탕으로 한 농축지수($I_{geo}$)에 근거해 국지적인 Mn 농축의 징후를 확인하였다. 그러나 농축지수와 존재형태비를 고려할 때 Zn, Pb도 환경변화에 따른 용출 가능성이 추정되었다.

Keywords

References

  1. Ashagrie, Y., W. Zech and G. Guggenberger, 2005. Transformation of a Podocarpus falcatus dominated natural forest into a monoculture Eucalyptus globules plantationat Munesa, Ethiopia: soil organic C, N and S dynamics in primary particle and aggregatesize fractions. Agriculture, Ecosystems and Environ., 106: 89-98. https://doi.org/10.1016/j.agee.2004.07.015
  2. Bordovskiy, O.K., 1965. Accumulation and transformation of organic substances in marine sediments. Mar. Geol., 3: 3-114. https://doi.org/10.1016/0025-3227(65)90002-2
  3. Cho, Y.G. and C.B. Lee, 2012. Heavy Metal contamination in surface sediments from Masan and Jinhae bay, southeast coast of Korea. J. KOSMEE, 15: 302−313.
  4. Cho, Y.G. and K.Y. Park, 1998. Heavy metals in surface sediments of the Youngsan estuary, west coast of Korea. J. Environ. Sci., 7: 549−557.
  5. Cho, Y.G., C.B. Lee and C.H. Koh, 2000. Heavy metals in surface sediments from Kwangyang bay, south coast of Korea. J. Korean Soc. Oceanogr., 5: 131−140.
  6. Cho, Y.G., C.B. Lee and M.S. Choi, 1999. Geochemistry of surface sediments off the southern and western coasts of Korea. Mar. Geol., 159: 111−129. https://doi.org/10.1016/S0025-3227(98)00194-7
  7. Cho, Y.G., C.B. Lee, and M.S. Choi, 1994. Characteristics of heavy metal distribution in surface sediments from the South Sea of Korea. J. Korean Soc. Oceanogr., 29: 338−356.
  8. Choi, M.C., H.B. Moon, S.S. Kim and J.S. Park, 2005. Evaluation of sewage pollution by Coprostanol in the sediments from Jinhae bay, Korea. J. Kor. Fish. Soc., 38: 118−128.
  9. Choi, M.H., 2004. Economic value of the Korean mudflat wetland. J. Wetlands Res., 6: 89-104.
  10. Crompton, T.R., 2015. Determination of Metals in Natural Waters, Sediments, and Soils. Elsevier, 318 pp.
  11. Cuong, D.T., and J.P. Obbard, 2006. Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Appl. Geochem. 21: 1335−1346. https://doi.org/10.1016/j.apgeochem.2006.05.001
  12. Davutluoglu, O.I., G. Seckin, C.B. Ersu, T. Yilmaz and B. Sari, 2011. heavy metal content and distribution in surface sediments of the Seyhan river, Turkey. J. Environ. Management, 92: 2250−2259. https://doi.org/10.1016/j.jenvman.2011.04.013
  13. Dong, D., Y.M. Nelson, L.W. Lion, M.L. Shuler and W.C. Ghiorse, 2000. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extraction: new evidence for the importance of Mn and Fe oxides. Water Res., 34: 427−436. https://doi.org/10.1016/S0043-1354(99)00185-2
  14. Folk, R.L. and W.C. Ward, 1957. Brazos river bar; A study in the significance of grain size parameter, J. Sed. Petrol., 27: 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  15. Folk, R.L., 1974. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas, 182 pp.
  16. Forstner, U. and W. Salomons, 1980. Trace metal analysis on polluted sediments. I. Assessment of sources and intensities. Environ. Technol. Lett., 1: 494-505. https://doi.org/10.1080/09593338009384006
  17. Ganeshram, R.S., S.E. Calvert, T.F. Pedersen and G.L. Cowie. 1999. Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: implications for hydrocarbon preservation. Geochim. Cosmochim. Acta, 63: 1723-1734. https://doi.org/10.1016/S0016-7037(99)00073-3
  18. Gibbs, R.J. 1977. Transport phase of transition metals in the Amazon and Yukon rivers. Geol. Soc. Am. Bull., 88: 829-843. https://doi.org/10.1130/0016-7606(1977)88<829:TPOTMI>2.0.CO;2
  19. Hong, J.T., B.S. Na, J.Y. Kim, Y.K. Koh, S.T. Youn, S.E. Shin, H.G. Kim, B.C. Moon and K.H. Oh, 2007. Sedimentary geochemical characteristics and environmental impact of sediments in Tamjin river and Doam bay. J. Environ. Impact Assess. 16: 393-405.
  20. Horowitz, A.J., 1985. A Primer on Trace Metal Sediment Chemistry. U.S. Geological Survey, Denver, pp. 36−46.
  21. Horowitz, A.J., 1991. A Primer on Sediment-Trace Element Chemistry. Lewis Publishers, INC., 136 pp.
  22. Hwang, D.W., H.G. Jin, S.S. Kim, J.D. Kim, J.S. Park and S.G. Kim, 2006. Distribution of organic matters and metallic elements in the surface sediments of Masan harbor, Korea. J. Kor. Fish. Soc., 39: 106−117.
  23. Ingram, R.L., 1971. Sieve Analysis. In: Procedures in Sedimentary Petrology, edited by Carver, R.E., Wiley-Inter Science, New York, 49-67.
  24. Ju, J.M., C.E. Chung and H.B. Yoo, 2002. Dynamics of zooplankton community in upper Tamjin river system, Korea. J. Sci. Edu. Chonnam Nat'l Univ., 26: 201−224.
  25. Kim, D.H., G.S. Kim and H.S. Cho, 2001. Estimate to the capacity of self purification in tidal flats of Kangjin bay, Korea. Collection of Dissertations of Mokpo National Maritime University, pp. 173−184.
  26. Kim, J.B., 2005. Role of Intertidal flats for the supply of food of fisheries organisms in Doam-Bay and near naro-do of the South Sea of Korea: Community Composition and Food Sources. Ph.D. Thesis, Pukyong National University, 166 pp.
  27. Kitano, Y. and R. Hujiyoshi, 1980. Selective chemical leaching of cadmium, copper, manganese and iron in marine sediments. Geochem J., 14: 133−122.
  28. Klamer, J.C., W.J.M. Hegeman and F. Smedes, 1990. Comparison of grain size correction procedures for organic micropollutants and heavy metals in marine sediments. Hydrobiologia, 208: 213−220. https://doi.org/10.1007/BF00007786
  29. Koh, Y.K., S.T. Toun and K.H. Oh, 2008. Sponge spicules and silicoflagellates in surface sediments of Doam bay, Jeonnam Province. J. Sci. Edu. Chonnam Nat'l Univ., 32: 83−91.
  30. Lee, S. and J.A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol., 53: 1298−1303.
  31. Lee, S.H. and J.A. Fuhrman, 1987. Relationship between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiology, 53: 1298−1303.
  32. Li, X. and I. Thornton, 2001. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl. Geochem., 16: 1693−1706. https://doi.org/10.1016/S0883-2927(01)00065-8
  33. Lim, D.I., J.Y. Choi, H.S. Jung, H.W. Choi and Y.O. Kim, 2007. Natural background level analysis of heavy metal concentration in Korean coastal sediments. Ocean & Polar Res., 29: 379−389. https://doi.org/10.4217/OPR.2007.29.4.379
  34. Liu, H.C., C.F. You, B.J. Huang and C.A. Huh, 2013. Distribution and accumulation of heavy metals in carbonate and reducible fraction of marine sediment from offshore mid-western Taiwan. Mar. Pollut. Bull., 73: 37−46. https://doi.org/10.1016/j.marpolbul.2013.06.007
  35. Luoma, S., 1990. Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Heavy Metals in the Marine Environment, edited by Furness R.W. and P.S., Rainbow, CRC Press Inc., pp. 51-66.
  36. Martin, J.M. and M. Whitfield, 1983. The significance of the river input of chemical elements to the ocean. In: Trace Metals in Sea Water, edited by Wong, C.S., E.A. Boyle, K.W. Bruland, J.D. Burton and E.D. Goldberg, New York: Plenum, pp. 265−296.
  37. Matschullat, J., R. Ottenstein and C. Reimann, 2000. Geochemical background-can we calculate it?, Environ. Geol., 39: 990−1000. https://doi.org/10.1007/s002549900084
  38. Mayer, L.M., 1994. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol., 114: 347-363. https://doi.org/10.1016/0009-2541(94)90063-9
  39. Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol., 114: 289-302. https://doi.org/10.1016/0009-2541(94)90059-0
  40. Ministry of Environment, 1999. Methodologies for the Quality Assessment of Benthic Environment of Korean Coastal Waters. 786 pp.
  41. MLTM(Ministry of Land, Transport and Maritime Affairs), 2010. Maritime Environment Pollutant' Testing Method, pp. 363−365.
  42. MLTM(Ministry of Land, Transport and Maritime Affairs), 2010. National Survey of Coastal Wetland: Precision Investigation, pp. 29−52.
  43. MOF(Ministry of Oceans and Fisheries), 2000. Studies for Sustainable Use of Tidal Flats in Korea(II), pp. 97−99.
  44. MOLIT(Ministry of Land, Infrastructure and Transport), 1994. Technical Reports, 1101: 132−149.
  45. Montoura, R.F., C.A. Dickson and J.P. Riley, 1978. The complexation of metals with humic materials in natural waters. Estuar. Coast. & Mar. Sci., 6: 387−408. https://doi.org/10.1016/0302-3524(78)90130-5
  46. Muller, G., 1979. Schwermetalle in den sedimenten des Rheins Vernderungen seit 1971. Umschau, 79: 778−783.
  47. Na, B.S., 2002. Distribution and Geochemical Characteristics of Surface Sediments in Doam Bay. Graduate School, Chonnam Nat,l Univ., Gwangju, 88 pp.
  48. Nam, D.W., S.S. Cha, C.G. Choi, J.B. Lee and H.Y. Lee, 2009. Ichthyofauna and habitat type of the fish in Tamjin river system, Korea. J. Environ. Sci., 18: 1001−1010.
  49. Newman, B.K. and R.J. Watling, 2007. Definition of baseline metal concentration for assessing metal enrichment of sediment from the south-eastern Cape coastline of South Africa. Water SA, 33: 675−691.
  50. Park, T.Y., 1999. A Study on the management planning for the conservation and environmentally friendly use of Korean coastal wetlands. J. Kor. Environ. Res. Tech., 2: 64−73.
  51. Rath, P., U.C. Panda, D. Bhatta and D.C. Sahu, 2009. Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments-A case study: Brahmani and Nandira rivers, India. J. Hazard. Mater., 163: 632−644. https://doi.org/10.1016/j.jhazmat.2008.07.048
  52. Salomons, W. and U. Forstner, 1984. Metals in the Hydrocycle. Springer-Verlag, Berlin, 349 pp.
  53. Schropp, S., G. Lewis, H. Windom, J. Ryann, F. Caldner and L. Burney, 1990. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries, 13: 227−235. https://doi.org/10.2307/1351913
  54. Siegel, F.R., 1995. Environmental geochemistry in development planning: An example from the Nile delta, Egypt. Geochem. Exploration, 55: 265−273. https://doi.org/10.1016/0375-6742(94)00071-9
  55. Summer, J.K., T.L. Wade, V.D. Engle and Z.A. Malaeb, 1996. Normalization of metal concentration in estuarine sediments from the Gulf of Mexico. Estuaries, 19: 581−594. https://doi.org/10.2307/1352519
  56. Teng, Y.G. and Y.P. Huang, 2009. Geochemical baseline of trace elements in the sediment in Dexing area, South China. Environ. Geol., 57: 1649−1660. https://doi.org/10.1007/s00254-008-1446-2
  57. Turekian K.K. and K.H. Wedepohl, 1961. Distribution of the elements in some major units of the earth's crust, Geol. Soc. Am. Bull., 72: 175−192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
  58. Volkman, J.K., D. Rohjans, J. Rullkötter, B.M. Scholz-Böttcher and G. Liebezeit, 2000. Sources and diagenesis of organic matter in tidal flat sediments from the German Wadden Sea. Cont. Shelf Res., 20: 1139-1158. https://doi.org/10.1016/S0278-4343(00)00016-9
  59. Wang, S., Y, Jia, S. Wang, X. Wang, H. Wang, Z. Zhao and B. Liu, 2010. Fractionation of heavy metals in shallow marine sediments from Jinzhou bay, China. J. Environ. Sci., 22: 23−31. https://doi.org/10.1016/S1001-0742(09)60070-X
  60. Woo, J.S., H.S. Choi, H.J. Lee and T.H. Kim, 2014. Organic matter in the sediments of Youngsan river estuary: Distribution and sources. J. Environ. Sci. Int., 23: 1375−1383. https://doi.org/10.5322/JESI.2014.23.7.1375
  61. Yang, Y., F. Chen, L. Zhang, J. Liu, S. Wu and M. Kang, 2012. Comprehensive assessment of heavy metal contamination in sediment of the Pearl river estuary and adjacent shelf. Mar. Pollut. Bull., 64: 1947−1955. https://doi.org/10.1016/j.marpolbul.2012.04.024