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Abstract
A nonresponse adjusted raking ratio estimator that consists of weighting adjustment using estimated response

probability and raking procedure is often used to reduce the nonresponse bias and keep the calibration property of
the estimator. We investigated asymptotic properties of nonresponse adjusted raking ratio estimator and proposed
a variance estimator. A simulation study is used to examine the performance of suggested estimators.

Keywords: raking ratio estimator, logistic regression, propensity score, nonresponse, regres-
sion estimator

1. Introduction

Most surveys of human respondents entail a certain degree of nonresponse. Many studies on reducing
or removing nonresponse bias have been done in survey statistics. A common way to handle unit
nonresponse is weight adjustment in which the sampling weights for the respondents are adjusted
so that the estimator based on the respondents only is (approximately) unbiased to the parameter of
interest.

Using the framework of two-phase sampling design, weight adjustment is performed by deriv-
ing the response probability (often called propensity score). Nonresponse adjusted weights are then
obtained by multiplying the inverse of estimated propensity score to the original sampling weight.
Statistical models are often employed for the derivation of estimated response probability. One of the
commonly used models, known as cell response model, assumes independent and identical response
distribution for every elements in the same cell. The other popular model is logistic regression model
that relates the binary response variable to the set of explanatory variables. The cell response model
can be viewed as a logistic regression model with categorical explanatory variables that define cells.
Results on the weight adjustment under the two-phase sampling framework were reviewed by Särndal
and Lundström (2005) and Särndal et al. (1992). Kim and Kim (2007) gave the asymptotic results of
weight adjusted estimator and proposed a possible variance estimator. Ekholm and Laaksonen (1991)
is a practical example of this method.

Calibration estimators introduced by Deville and Särndal (1992) are often used to improve the ef-
ficiency of the estimator or to handle nonresponse when auxiliary information on the population (such
as population total of auxiliary variables) is available. One typical example of such estimators is the
raking ratio method in which the marginal distributions of several auxiliary categorical variables were
used as auxiliary information. Raking ratio method, originally introduced by Deming and Stephan
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(1940) is often used to ensure that the estimator of the marginal distribution of auxiliary variables is
equivalent to the known population distribution. The asymptotic results and small sample properties
of the raking ratio estimator were investigated by Deville and Särndal (1992) and Deville et al. (1993).

In practice, a set of adjusted weights is often defined through two steps. In the first step, re-
sponse probability, is estimated from a logistic regression model using appropriate set of explanatory
variables. Then the final set of adjusted weights is obtained through raking ratio method or post strat-
ification. Nonresponse adjusted raking ratio weights for both household and individuals were derived
for the analysis of California Health Interviewing Survey (2011), that is a combined landline and
cell telephone survey. Other examples in which the final weights were derived through two steps,
nonresponse adjustment followed by raking, are National Health and Nutrition Examination Survey
(NHANES) of USA (1996) and National Health and Nutrition Survey in South Korea (2010).

In our study, we derive the asymptotic properties of the nonresponse adjusted raking ratio esti-
mator and suggest an explicit form of asymptotically unbiased variance estimator using the result of
Deville and Särndal (1992) and Kim and Kim (2007). We also performed a small simulation study to
investigate the properties of the nonresponse adjusted raking ratio estimator and variance estimator.

2. Nonresponse Adjusted Raking Ratio Estimator

Consider the finite population U = {1, 2, . . . ,N} where the population size N is known. The parameter
of interest is the population mean of the variable of interest, y, denoted by ȳN = N−1 ∑

i∈U yi. If all sam-
pled elements were observed, we consider the Horvitz-Thompson estimator (Horvitz and Thompson,
1952) of the form, ȳHT = N−1 ∑

i∈A π
−1
i yi, as a design unbiased estimator of the population mean where

A ∈ U is the set of indices in the sample and πi = Pr{i ∈ A}.
We define the response indicator variable of the unit i by

Ri =

1, if unit i responds,
0, if unit i does not respond,

(2.1)

for i ∈ A and define 0 < pi|A = Pr{Ri = 1|i ∈ A} as the response probability of sampled unit i. We
assume Ri’s are independent with Var(Ri|A) = pi|A(1−pi|A). By using the estimated response probability
p̂i|A based on the logistic regression model,

logit
(
pi|A|A

)
= z′iαA, (2.2)

we define the nonresponse adjusted estimator

ȳNA = N−1
∑
i∈A

π−1
i p̂−1

i|A Ri yi. (2.3)

The estimator of (2.3) is also called nonresponse weights adjustment (NWA) estimator, see Rosen-
baum (1987).

Assume there exist P-variables of which population marginal distributions are known and they
are used for defining raking ratio estimator. Let xi = (x1i, . . . , xpi, . . . , xPi) and xpi = (x1,pi, . . . , xdp,pi)
be a set of indicators such that x j,pi = 1 if element i is in jth category of pth categorical variable and
x j,pi = 0 otherwise, where dp + 1 is the number of categories defined by xp. Define the nonresponse
adjusted raking ratio estimator by

ȳNARR = N−1
∑
i∈A

π−1
i p̂−1

i|A exp
(
x′i λ̂

)
Ri yi, (2.4)
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where λ̂ and α̂ are the solution to

N−1
∑
i∈A

π−1
i p̂−1

i|A exp
(
x′i λ̂

)
Ri xi = x̄N , (2.5)

and ∑
i∈A

π−1
i

{
Ri −

[
1 + exp

(−z′i α̂A
)]}

zi = 0, (2.6)

respectively, and p̂i|A = [1+ exp(−z′i α̂A)]−1. We assume that there exists a unique solution to (2.5) and
(2.6) and the solution α̂A of (2.6) is a consistent estimator with respect to the response mechanism.
Note that same variables could be used for both xi and zi. Equation (2.5) can be understood as a cali-
bration equation so that the nonresponse adjusted raking ratio estimators of x-variables are equivalent
to known population values. Equation (2.6) provides the (weighted) maximum likelihood estimator
of αA.

To investigate the asymptotic properties of the ȳNARR, we consider a sequence of populations, sam-
ples and sampling designs assumed by Isaki and Fuller (1982). Assume population size, Nn(> n)
increases as n increases. Assume limn→∞ ω̄N exists, where ω̄N = N−1 ∑N

i=1 ωi and ωi = (1, x′i , yi)′.
Also assume ωi has the finite fourth moments and its sample moments converge to the population
moments such that N−1

∑
i∈A

π−1
i ωiω

′
i − N−1

N∑
i=1

ωiω
′
i

 ∣∣∣∣∣∣FN = Op

(
n−

1
2

)
, (2.7)

where FN = (ω′1, . . . ,ω
′
N)′ is the finite population. The assumption (2.7) means that mean and vari-

ance of Horvitz-Thompson estimator are well defined and converge to the corresponding population
parameter with the order n−1/2 in probability. In most of sampling designs, Horvitz-Thompson esti-
mator of the mean is unbiased and also has the finite variance of order n−1 and thus assumption, (2.7)
is usually satisfied.

Result 1. Under the assumptions on response variable Ri of (2.1), logistic regression model of (2.2)
and the assumption (2.7) on the sequence of populations and samples,

ȳNARR − ȳN = N−1
∑
i∈A

π−1
i

{
pi|Az′iδN + p−1

i|A Ri
(
ei − pi|Az′iδN

)}
+ Op

(
n−1

)
, (2.8)

where ei = yi − x′iβN ,

δN =

∑
i∈U

pi|A
(
1 − pi|A

)
ziz′i

−1 ∑
i∈U

(
1 − pi|A

)
ziei,

and

βN =

 N∑
i=1

xix′i

−1 N∑
i=1

xiyi.
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The brief proof of the result is given in Appendix. Using the result of (2.8), we could derive an
asymptotic variance of the nonresponse adjusted raking ratio estimator as below.

V {ȳNARR − ȳN |FN} = E
[
V {ȳNARR − ȳN |AN ,FN} |FN

]
+ V

[
E {ȳNARR − ȳN |AN ,FN} |FN

]
, (2.9)

where

E
[
V {ȳNARR − ȳN |AN ,FN} |FN

] ≈ E

N−2
∑
i∈A

π−2
i p−1

i|A

(
1 − pi|A

) (
ei − pi|Az′iδN

)2
∣∣∣∣∣FN

 ,
V

[
E {ȳNARR − ȳN |AN ,FN} |FN

] ≈ V

N−1
∑
i∈A

π−1
i ei

∣∣∣∣∣FN

 ,
AN is the set of indices in the sample selected from the population UN , and UN is the N th population
of size N in the sequence.

The first term of (2.9) is the design expectation of conditional variance of the estimator condi-
tioning on population and sample. The second term is the design variance of the Horvitz-Thompson
estimator of the population mean of residuals.

For the definition of an asymptotically unbiased variance estimator of ȳNARR, assume that there
exists a unbiased variance estimator under the full responses as a form of

V̂ (ȳHT ) =
∑
i∈A

∑
j∈A

Ωi jyiy j. (2.10)

As an example of (2.10), we could consider Horvitz-Thompson variance estimator or Sen-Yates-
Grundy variance estimator. For the definition of Horvitz-Thompson variance estimator and Sen-Yates-
Grundy variance estimator, see Särndal et al. (1992).

One possible variance estimator of ȳNARR is

V̂ = V̂res + V̂sam, (2.11)

where

V̂sam =
∑
i∈AR

Ωii p̂−1
i (giêi)2 +

∑
i, j

∑
i, j∈AR

Ωi j p̂−1
i p̂−1

j (giêi)
(
g jê j

)
,

V̂res = N−2
∑
i∈AR

π−2
i p̂−2

i (1 − p̂i)
(
êi − p̂iz′i γ̂

)2 ,

êi = yi − x′i β̂NA,

gi = exp
(
x′i λ̂

)
,

γ̂ =

∑
AR

π−1
i p̂−1

i (1 − p̂i) ziz′i

−1 ∑
AR

π−1
i (1 − p̂i) ê′i

 ,
where Ωi j is the term that are used to define an unbiased variance estimator of ȳHT in (2.10). The
variance estimator is obtained by estimating each term of (2.9) unbiasedly. For the definition of the
variance estimator, we considered unbiased estimator with respect to design and response mechanism.
We also use g-weight suggested by Särndal, Swensson and Wretman (1989) for the variance estimator
of (2.11).
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3. Simulation Study

A simulation study was performed to investigate the properties of the nonresponse adjusted raking
ratio estimator and its variance estimator investigated at Section 2. For the simulation study, 18
different stratified populations of size 10,000 were generated from multivariate normal distributionxhi

zhi

yhi

 ∼ MVN


222

 ,
1 ρ1 ρ2

1 ρ3
1


 , h = 1, 2, 3, 4, i = 1, . . . ,Nh, (3.1)

where Nh = 1,000, 2,000, 3,000, 4,000 for h = 1, 2, 3, 4 respectively. For ρ1, we considered two levels
0.0 and 0.3, and three levels of (0.0, 0.3, 0.6) are considered for ρ2 and ρ3. We also considered the
variable whi generated from χ2 distribution with 2 degrees of freedom.

The variable z generated the response probability using the logistic regression model,

Ri|A ∼ Bernoulli(pi|A), logit(pi|A) = −1 + zi. (3.2)

Variable x and w were used to define membership variables that were used to calculate raking ratio
estimator. The vector of indicator variables defined is

Ii =
(
I′i1, I

′
i2

)′
, (3.3)

where

I′i1 =


(1, 0, 0, 0), if xi < qN

0.25,

(0, 1, 0, 0), if qN
0.25 ≤ xi < qN

0.50,

(0, 0, 1, 0), if qN
0.50 ≤ xi < qN

0.75,

(0, 0, 0, 1), if qN
0.75 ≤ xi,

, I′i2 =


(1, 0, 0), if wi < qχ

2

0.25,

(0, 1, 0), if qχ
2

0.25 ≤ wi < qχ
2

0.50,

(0, 0, 1), if qχ
2

0.50 ≤ wi < qχ
2

0.75,

and qN
p and qχ

2

p denote the pth percentiles of the normal distribution with mean 2 and variance 1 and
χ2 distribution with 2 degree of freedom, respectively.

From each generated finite population, two sets of stratified random samples of size n = 400
and n = 800 were selected and the stratum sample size were equal as nh = n/4 for h = 1, 2, 3, 4.
We assumed the value of zi is known for every element in the sample but the vector of membership
indicators and variables of interest are known only for the responding element, that is, Ri = 1. We
also assume that population total (or mean) of Ii is known so that we could calculate the raking ratio
estimator. The Monte Carlo sample sizes are all 20,000 and average response rate is about 0.70. As an
estimator for the population mean, we considered ȳNA of (2.3) and ȳNARR of (2.4) with xi = Ii of (3.3).

Table 1 shows the Monte Carlo relative bias in percent and variance of the two estimators. Monte
Carlo relative bias of θ̂, that is an estimator of θ, is defined as θ−1[EMC(θ̂) − θ], where EMC(θ̂) is the
Monte Carlo mean of θ̂ and θ is the parameter. With a sample of size 400 and 800, both estimators
have negligible bias with less than 1% in absolute. Variance of ȳNA gets smaller as the correlation
between z and y gets stronger as expected. The variance of ȳNARR decreases as the correlation between
x and y increases because the raking ratio estimator is asymptotically equivalent to the regression
estimator with the regression estimator efficient when the auxiliary variables are correlated with the
variable of interest. Across all samples, the average reduction of the variance obtained by using ȳNARR

is about 13% with maximum 36%.
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Table 1: Monte Carlo relative bias and variance of estimators

Sample size ρ1 ρ2 ρ3
Relative Bias in % Variance ×103

ȳNA ȳNARR ȳNA ȳNARR

0.0 −0.293 −0.284 4.940 4.738
0.0 0.3 0.058 0.407 4.616 4.665

0.6 −0.522 0.077 4.263 4.512
0.0 0.502 0.435 5.058 4.268

0.0 0.3 0.3 0.121 0.010 4.538 4.236
0.6 0.591 0.826 3.922 3.847
0.0 0.336 0.498 5.363 3.272

0.6 0.3 −0.371 −0.031 4.610 3.249

n = 400 0.6 −0.190 0.154 4.096 2.804
0.0 0.784 0.799 4.822 4.565

0.0 0.3 −0.419 −0.381 4.429 4.409
0.6 0.516 0.648 4.161 4.213
0.0 −0.534 −0.589 4.911 4.266

0.3 0.3 0.3 0.085 0.226 4.486 4.211
0.6 −0.581 −0.115 4.137 4.097
0.0 0.107 0.192 5.021 3.227

0.6 0.3 −0.168 0.041 4.493 3.187
0.6 −0.162 0.257 4.131 3.154
0.0 −0.352 −0.341 2.323 2.256

0.0 0.3 0.691 0.592 2.252 2.261
0.6 0.136 0.330 1.966 2.064
0.0 0.521 0.434 2.419 2.050

0.0 0.3 0.3 0.399 0.559 2.039 1.878
0.6 0.247 0.261 1.965 1.979
0.0 0.361 0.526 2.537 1.588

0.6 0.3 −0.048 0.035 2.193 1.483

n = 800 0.6 0.268 0.402 1.978 1.409
0.0 0.784 0.802 2.323 2.197

0.0 0.3 −0.436 −0.592 2.221 2.214
0.6 0.356 0.400 1.884 1.990
0.0 −0.493 −0.541 2.300 2.006

0.3 0.3 0.3 0.272 0.159 2.300 2.065
0.6 0.514 0.537 1.830 1.814
0.0 0.130 0.244 2.315 1.515

0.6 0.3 −0.087 −0.094 2.239 1.543
0.6 0.449 0.581 1.965 1.532

We also calculate the variance estimator of ȳNARR given in (2.11). Table 2 shows the Monte Carlo
properties of V̂sam, V̂res and V̂ . The relative bias of the variance estimator in percent is

[
VMC(ȳNARR)

]−1
[
EMC

(
V̂
)
− VMC (ȳNARR)

]
.

For the samples of size 400, suggested variance estimator underestimates the true variance in all
population. Relative bias of the variance estimator is about −4% to −7%. Underestimation of the
variance estimator with sample size 400 is mainly due to the Taylor approximation in which the
second and higher order term of the approximation are not considered for the variance estimation.
The absolute relative bias of the suggested variance estimator with a sample of size 800 is less than
2.2%. For both sample sizes, the component of the variance estimator, V̂res makes up about 34% to
36% of the V̂ . Thus if only V̂sam is used to estimate the variance of ȳNARR, which is common in practice,
it is expected to underestimate the true variance severely.
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Table 2: Monte Carlo properties of variance estimators

Sample size ρ1 ρ2 ρ3
Monte Carlo mean Relative bias VMC(V̂)

V̂sam V̂res V̂ of V̂ (%) ×106

0.0 2.863 1.669 4.531 −4.358 0.624
0.0 0.3 2.943 1.509 4.452 −4.570 0.438

0.6 2.920 1.374 4.294 −4.835 0.700
0.0 2.576 1.487 4.062 −4.821 0.398

0.0 0.3 0.3 2.676 1.359 4.035 −4.747 0.341
0.6 2.590 1.111 3.701 −3.788 0.433
0.0 1.948 1.149 3.097 −5.343 0.328

0.6 0.3 2.019 1.067 3.087 −4.999 0.216

n = 400 0.6 1.889 0.732 2.621 −6.532 0.308
0.0 2.821 1.574 4.394 −3.748 0.520

0.0 0.3 2.731 1.493 4.223 −4.217 0.448
0.6 2.768 1.255 4.024 −4.480 0.476
0.0 2.615 1.426 4.042 −5.253 0.322

0.3 0.3 0.3 2.606 1.459 4.066 −3.444 0.345
0.6 2.709 1.163 3.871 −5.510 0.423
0.0 1.971 1.098 3.069 −4.897 0.219

0.6 0.3 1.941 1.052 2.992 −6.108 0.286
0.6 1.958 0.982 2.940 −6.764 0.606
0.0 1.412 0.878 2.290 1.497 0.090

0.0 0.3 1.402 0.890 2.293 1.428 0.111
0.6 1.402 0.663 2.065 0.024 0.062
0.0 1.265 0.782 2.047 −0.149 0.053

0.0 0.3 0.3 1.225 0.677 1.902 1.250 0.036
0.6 1.306 0.683 1.989 0.493 0.360
0.0 0.962 0.613 1.574 −0.864 0.052

0.6 0.3 0.966 0.527 1.494 0.706 0.029

n = 800 0.6 0.960 0.452 1.413 0.295 0.076
0.0 1.388 0.824 2.211 0.646 0.076

0.0 0.3 1.407 0.807 2.214 0.002 0.076
0.6 1.403 0.629 2.032 2.125 0.084
0.0 1.287 0.744 2.032 1.267 0.041

0.3 0.3 0.3 1.278 0.772 2.049 −0.737 0.054
0.6 1.229 0.595 1.824 0.540 0.039
0.0 0.971 0.570 1.541 1.692 0.027

0.6 0.3 0.982 0.588 1.570 1.740 0.031
0.6 0.948 0.554 1.502 −1.985 0.073

Appendix A: Proof of result 1

Step 1. Show

N−1
∑
i∈A

π−1
i p̂−1

i|ARiωiω
′
i − N−1

N∑
i=1

ωiω
′
i = Op

(
n−

1
2

)
. (A.1)

Proof: Let νi be an any element of ωiω
′
i . Then, by Kim and Kim (2007),

(ν̄NA − ν̄NAL)
∣∣∣FN = Op

(
n−1

)
,

where

ν̄NAL = N−1
∑
i∈A

π−1
i

{
pi|Az′iγn + p−1

i|A Ri
(
νi − pi|Az′iγn

)}
,



662 Mingue Park

and

γn =

∑
i∈A

π−1
i pi|A

(
1 − pi|A

)
ziz′i

−1 ∑
i∈A

π−1
i

(
1 − pi|A

)
ziνi.

Note that

E
(
ν̄NAL

∣∣∣FN

)
= E

{
E

(
ν̄NAL

∣∣∣AN ,FN

) ∣∣∣FN

}
= ν̄N

and

V
(
ν̄NAL

∣∣∣FN

)
= V

N−1
∑
i∈A

π−1
i νi

∣∣∣∣∣FN

 + N−2E

∑
i∈A

π−2
i

[
p−1

i|A (1 − pi|A)
(
νi − pi|Az′iγn

)2
] ∣∣∣∣∣FN


= O

(
n−1

)
.

Thus, for all element νi of ωiω
′
i ,

(ν̄NA − ν̄N)
∣∣∣FN = Op

(
n−

1
2

)
.

2

Step 2. Show

ȳNARR = ȳNA + (x̄N − x̄NA) β̂NA + Op

(
n−1

)
,

where

β̂NA =

∑
A

π−1
i p̂−1

i|A Rix′ixi

−1 ∑
A

π−1
i p̂−1

i|A Rix′iyi

 .
Proof: For any sample and a set of respondents, there exists a solution of λ̂ that satisfies the equation
(2.5) as explained by Deville and Särndal (1992). Define the function ϕ(·) as

ϕ
(
λ̂
)
= N−1

∑
i∈A

π−1
i p̂−1

i|A

[
exp

(
x′i λ̂

)
− 1

]
xiRi. (A.2)

Note that ϕ(0) = 0. By using the Taylor expansion of ϕ(λ̂) at λ̂ = 0, we obtain

ϕ
(
λ̂
)
= ϕ(0) + ϕ′(ξ)

(
λ̂ − 0

)
= ϕ′(ξ)λ̂,

where ξ is a vector in the interval 0 and λ̂, called B. Now let η be a vector such that

η = x̄N − x̄NA.

Then, by (2.5),

λ̂ = [ϕ′(ξ)]−1(η)
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and thus, by the characteristics of exponential function,∣∣∣∣∣∣λ̂∣∣∣∣∣∣ ≤ K′ϕ
∣∣∣∣∣∣η∣∣∣∣∣∣ ,

where K′ϕ is a positive constant such that ||[ϕ′(ξ)]−1|| ≤ Kϕ for all ξ in B. By (2.8), ||η|| = Op(n−1/2)
and thus

λ̂ = Op

(
n−

1
2

)
.

Now using exp(x′i λ̂) = 1 + x′i λ̂ + θ(x
′
iξ) and (2.7), we have

λ =

N−1
∑
i∈A

π−1
i p̂−1

i|A Rixix′i

−1

(x̄N − x̄NA) + Op(n−1),

because maxξ θ(x
′
iξ) = O(n−1). Thus,

ȳNARR = N−1
∑
i∈A

π−1
i p̂i|A exp

(
x′i λ̂

)
Riyi

= ȳNA + (x̄N − x̄NA) β̂NA + Op

(
n−1

)
. (A.3)

2

Step 3. Show the final result.

Proof: By (A.1),

β̂NA − βN = Op

(
n−

1
2

)
,

and thus, due to the result of Kim and Kim (2007),

ȳNARR = ȳNA + (x̄N − x̄NA)βN + Op

(
n−1

)
= x̄NβN + N−1

∑
A

π−1
i p̂−1

i|A Ri
(
yi − xiβN

)
+ Op

(
n−1

)
= x̄NβN + N−1

∑
i∈A

π−1
i

{
pi|Az′iδN + p−1

i|A Ri
(
ei − pi|Az′iδN

)}
+ Op

(
n−1

)
. (A.4)

2

Appendix B: Concluding remark

In many survey practices, both weight adjustment using the estimated response probability and raking
ratio procedure are employed to reduce nonresponse bias and obtain the known population auxiliary
information if the estimator were applied to auxiliary variables. We proposed a consistent variance
estimator using the asymptotic result of nonresponse adjusted raking ratio estimator. A simulation
study indicated that a variance estimator that does not consider variability due to nonresponse and
adjustment could severely underestimate true variance.
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