참고문헌
- Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803-821. https://doi.org/10.2307/2532201
- Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Polya urn schemes, Annals of Statistics ,1, 353-355. https://doi.org/10.1214/aos/1176342372
- Booth, J. G., Casella, G. and Hobert, J. P. (2008). Clustering using objective functions and stochastic search, Journal of Royal Statistical Society: Series B (Statistical Methodology), 70, 119-139. https://doi.org/10.1111/j.1467-9868.2007.00629.x
- Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9-25.
- Buonaccorsi, J. P. (1996). Measurement error in the response in the general linear model, Journal of the American Statistical Association, 91, 633-642. https://doi.org/10.1080/01621459.1996.10476932
- Dasgupta, A. and Raftery, A. E. (1998). Detecting features in spatial point processes with clutter via model-bases clustering, Journal of the American Statistical Association, 93, 294-302. https://doi.org/10.1080/01621459.1998.10474110
- Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society: Series B (Methodological), 39, 1-38.
- Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association, 90, 577-588. https://doi.org/10.1080/01621459.1995.10476550
- Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems, Annals of Statistics, 1, 209-230. https://doi.org/10.1214/aos/1176342360
- Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation, Journal of the American Statistical Association, 97, 611-631. https://doi.org/10.1198/016214502760047131
- Hurn, M., Justel, A. and Robert, C. P. (2003). Estimating mixtures of regressions, Journal of Computational and Graphical Statistics, 12, 55-79. https://doi.org/10.1198/1061860031329
- Kiefer, N. M. (1978). Discrete parameter variation: Efficient estimation of a switching regression model, Econometrica, 46, 427-434. https://doi.org/10.2307/1913910
- Kyung, M., Gill, J. and Casella G. (2010). Estimation in Dirichlet random effects models, Annals of Statistics, 38, 979-1009. https://doi.org/10.1214/09-AOS731
- MacEachern, S. N. and Muller, P. (1998). Estimating mixture of Dirichlet process model, Journal of Computational and Graphical Statistics, 7, 223-238.
- McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications to Clustering, Marcel Dekker, New York.
- McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models, Wiley, New York.
- Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models, Journal of Computational and Graphical Statistics, 9, 249-265
- Quandt, R. E. (1958). The estimation of the parameters of a linear regression system obeying two separate regimes, Journal of the American Statistical Association, 53, 873-880. https://doi.org/10.1080/01621459.1958.10501484
- Quandt, R. E. and Ramsey, J. B. (1978). Estimating mixtures of normal distributions and switching regressions, Journal of the American Statistical Association, 73, 730-738. https://doi.org/10.1080/01621459.1978.10480085
- Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components, Journal of the Royal Statistical Society: Series B (Methodological), 59, 731-792. https://doi.org/10.1111/1467-9868.00095
- Tierney, L. and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities, Journal of the American Statistical Association, 81, 82-86. https://doi.org/10.1080/01621459.1986.10478240
- Wang, N., Lin, X., Gutierrez, R. G. and Carroll, R. J. (1998). Bias analysis and SIMEX approach in generalized linear mixed measurement error models, Journal of the American Statistical Association, 93, 249-261. https://doi.org/10.1080/01621459.1998.10474106
- Wolfinger, R. and O'Connell, M. (1993). Generalized linear mixed models a pseudo-likelihood approach, Journal of Statistical Computation and Simulation, 48, 233-243. https://doi.org/10.1080/00949659308811554