References
- Aertsen, W., Kint, V., Orshoven, J., Ozkan, K. and Muys, B. (2010), "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests", Ecol. Model., 221, 1119-1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007
- Abellan, J. and Masegosa, A.R. (2012), "Bagging schemes on the presence of class noise in classification", Exp. Syst. Appl., 39(8), 6827-6837. https://doi.org/10.1016/j.eswa.2012.01.013
- Anderson, D. and McNeill, G. (1992), Artificial neural networks technology. Rome Laboratory, A DACS State of the Art Report, ELIN: A011, New York.
- Basak, D., Pal, S. and Patranabis, D.C. (2007), "Support vector regression", Neu. Information Pro. Lett. Rev., 11(10), 203-224.
- Borra, S. and Di Ciaccio, A. (2010), "Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods", Comput. Stat. Data An., 54(12), 2976-2989. https://doi.org/10.1016/j.csda.2010.03.004
- Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984), Classification and regression trees, Wadsworth, Int. Group, Belmont, California.
- Breiman, L. (1996), "Bagging predictors", Mach. Learn., 24(2), 123-140. https://doi.org/10.1023/A:1018054314350
- Breiman, L. (1999), Using adaptive bagging to debias regressions., Technical Report No. 547 of University of CA, Berkeley.
- Buhlmann, P. and Yu, B. (2002), "Analyzing bagging", Statist., 30(4), 927-961. https://doi.org/10.1214/aos/1031689014
- Chou, J.S. and Tsai, C.F. (2012), "Concrete compressive strength analysis using a combined classification and regression technique", Automat. Constr., 24, 52-60. https://doi.org/10.1016/j.autcon.2012.02.001
- Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
- Coppin, B. (2004), Artificial intelligence illuminated., Jones and Bartlett Publishers; Massachusetts.
- Cortes, C. and Vapnik, V. (1995), "Support vector networks", Mach. Learn., 20, 273-297.
- Erdal, H.I., Karakurt, O. and Namli, E. (2013), "High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform", Eng. Appl. Artif. Intel., 26(4), 1246-1254. https://doi.org/10.1016/j.engappai.2012.10.014
- Erdal, H.I. (2013), "Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction", Eng. Appl. Artif. Intel., 26(7), 1689-1697. https://doi.org/10.1016/j.engappai.2013.03.014
- Erdal, H.I. and Karakurt, O. (2013), "Advancing monthly streamflowprediction accuracy of CART models using ensemble learning paradigms", J. Hydrol., 477, 119-128. https://doi.org/10.1016/j.jhydrol.2012.11.015
- Ferraris, C.F. (1999), "Measurement of the rheological properties of high performance concrete: state of the art report", J. Res. Natl. Inst. Stan., 104(5), 461-478. https://doi.org/10.6028/jres.104.028
- Ferraris, C.F., Brower, L., Ozyildirim, C. and Daczko, J. (2000), "Workability of self-compacting concrete", Int'l symposium on high performance concrete proceedings, Natl. Inst. Stan, Florida.
- Gambhir, M.L. (2004), Concrete Technology, Tata McGraw-Hill Publishing Company Limited.
- Hancock, T., Put, R., Coomans, D., Vanderheyden, Y. and Everingham,Y. (2005), "A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies", Chem. Intel. Lab.Syst., 76 (2), 185-196. https://doi.org/10.1016/j.chemolab.2004.11.001
- Haykin, S. (1999), Neural Networks: A comprehensive foundation, 2nd Editions Pearson Education, 9th Indian reprint 2005, India.
- Heshmati, A.A.R., Salehzade, H., Alavi, A.H., Gandomi, A.H. and Abadi, M.M. (2008), "A multi expression programming application to high performance concrete", World Appl. Sci. J., 5(2), 215-223.
- Jia, J., Xiao, X., Liu, B. and Jiao, L. (2011), "Bagging-based spectral clustering ensemble selection", Pattern Recogn. Lett., 32(10),1456-1467. https://doi.org/10.1016/j.patrec.2011.04.008
- Karakurt, O., Erdal, H.I., Namli, E., Yumurtaci Aydogmus, H. and Turkan, Y.S. (2013), "Comparing ensembles of decision trees and neural networks for one-day-ahead streamflow prediction", Sci. Res. J. (SCIRJ), I(IV).
- Kewalramani, M.A. and Gupta, R. (2006), "Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks", Automat. Constr., 15(3), 374-379. https://doi.org/10.1016/j.autcon.2005.07.003
- Minqiang, Li., Tian, Jin. and Fuzan, Chen. (2008), "Improving multiclass pattern recognition with a co-evolutionary RBFNN", Pattern Recogn. Lett., 29(4), 392-406. https://doi.org/10.1016/j.patrec.2007.10.019
- Li, Y. (2006), "Predicting materials properties and behavior using classification and regression trees", Mater. Sci. Eng. A, 433, 261-268. https://doi.org/10.1016/j.msea.2006.06.100
- Nanthagopalan, P. and Santhanam, M. (2011), "Fresh and hardened properties of self-compacting concrete produced with manufactured sand", Cement Concrete Comp., 33(3), 353-358. https://doi.org/10.1016/j.cemconcomp.2010.11.005
- Orr, M.J.L. (1996), Introduction to radial basis function networks: centre for cognitive science, University of Edinburgh.
- Osman, I.H. and Laporte, G. (1996), "Metaheuristics: a bibliography", Ann. Oper. Res., 63, 513-623.
- Pino-Mejias, R., Jimenez-Gamero, M.D., Cubiles-de-la-Vega, M.D. and Pascual-Acosta, A. (2008), "Reduced bootstrap aggregating of learning algorithms", Pattern Recogn. Lett., 29, 265-271. https://doi.org/10.1016/j.patrec.2007.10.002
- Refaeilzadeh, P., Tang, L. and Liu, H. (2009), Cross-validation, Encyclopedia of database systems. Springer.
- Rodriguez, J.D., Perez, A. and Lozano, J.A. (2010), "Sensitivity analysis of k-fold cross validation in prediction error estimation", Pattern Anal. Mach. Intel., IEEE Tran., 32(3), 569-575. https://doi.org/10.1109/TPAMI.2009.187
- Thomas, P. and Thomas, A. (2011), "Multilayer perceptron for simulation models reduction: application to a sawmill workshop", Eng. Appl. Artif. Intel., 24, 646-657. https://doi.org/10.1016/j.engappai.2011.01.004
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Tregger, N., Gregori, A., Ferrara, L. and Shah, S. (2012), "Correlating dynamic segregation of self-consolidating concrete to the slump-flow test", Constr. Build. Mater., 28, 499-505. https://doi.org/10.1016/j.conbuildmat.2011.08.052
- Vapnik, V.N. (2000), The Nature of Statistical Learning Theory, 2nd Editions, Springer-verlag New York Inc.
- Wang, G., Hao, J., Mab. J. and Jiang, H. (2011), "A comparative assessment of ensemble learning for credit scoring", Exp. Syst. Appl., 38, 223-230. https://doi.org/10.1016/j.eswa.2010.06.048
- Wang, G., Ma, J., Huang, L. and Xu, K. (2012), "Two credit scoring models based on dual strategy ensemble trees", Knowl. Based Syst., 26, 61-68. https://doi.org/10.1016/j.knosys.2011.06.020
- Yeh, I.C. (2007), "Modeling slump flow of concrete using second-order regressions and artificial neural networks", Cement Concrete Comp., 29, 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001
- Yen, T., Tang, C.W., Chang, C.S. and Chen, K.H. (1999), "Flow behaviour of high strength high-performance concrete", Cement Concrete Comp., 21, 413-424. https://doi.org/10.1016/S0958-9465(99)00026-8
- Vapnik, V., Golowich, S.E. and Smola, A. (1996), "Support vector method for function approximation, regression estimation, and signal processing", Adv. Neu. Inform. Pr. Syst. 9.
Cited by
- Investigation of irradiated 1H-Benzo[b]pyrrole by ESR, thermal methods and learning algorithm vol.171, pp.5-6, 2016, https://doi.org/10.1080/10420150.2016.1203925
- Forecasting Bank Failure: Base Learners, Ensembles and Hybrid Ensembles vol.49, pp.4, 2017, https://doi.org/10.1007/s10614-016-9623-y
- Bagging ensemble models for bank profitability: An emprical research on Turkish development and investment banks vol.49, 2016, https://doi.org/10.1016/j.asoc.2016.09.010
- Analysis of Poly(2-Hydroxyethyl~Methacrylate)-co- Poly(4-Vinyl Pyridine) Copolymers [COP2,4] Irradiated: an EPR study vol.130, pp.1, 2016, https://doi.org/10.12693/APhysPolA.130.167
- Enhanced Predictive Models for Construction Costs: A Case Study of Turkish Mass Housing Sector pp.1572-9974, 2019, https://doi.org/10.1007/s10614-018-9814-9
- YAPAY ZEKÂ MODELLERİ İLE BETONARME YAPILARA AİT ENERJİ PERFORMANS SINIFLARININ TAHMİNİ vol.22, pp.3, 2015, https://doi.org/10.17482/uumfd.332320
- Prediction of concrete compressive strength using non-destructive test results vol.21, pp.4, 2015, https://doi.org/10.12989/cac.2018.21.4.407
- An assessment of machine learning models for slump flow and examining redundant features vol.25, pp.6, 2015, https://doi.org/10.12989/cac.2020.25.6.565
- Predicting the dynamic modulus of hot mix asphalt mixtures using bagged trees ensemble vol.260, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.120468
- Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm vol.14, pp.4, 2015, https://doi.org/10.3390/ma14040794