DOI QR코드

DOI QR Code

Comparative Study of the Storm Centered Areal Reduction Factors by Storm Types

호우 형태에 따른 호우중심형 면적감소계수 비교

  • 이동주 (이피에스엔지니어링) ;
  • 현석훈 (단국대학교 공과대학 토목환경공학과) ;
  • 강부식 (단국대학교 공과대학 토목환경공학과)
  • Received : 2015.06.25
  • Accepted : 2015.10.27
  • Published : 2015.12.01

Abstract

The Fixed Area ARFs (Area Reduction Factors) method has limitations in providing exact information about spatial distribution due to the lack of enough density of rain gauge stations. In this study the storm-centered ARF was evaluated between frontal and typhoon storm events utilizing radar precipitation. In estimating storm-centered ARFs, in order to consider the horizontal advection, direction, and spatial distribution of rain cells, the rotational angle of rainfall of each rainfall event and the optimum areal rainfall within the spatial rain cell envelope was taken into account. Compared with the frontal storm, the ARF of typhoon storm shows narrow range of variability. It is noted that the ARFs of frontal storm increases with the rainfall duration, but those of typhoon storm shows opposite pattern. As a result the typhoon ARFs appear greater than frontal ARFs for 1~3 hours of duration, but less for more than 6 hours of duration.

면적고정형 ARF (Fixed Area ARFs)방법은 강우관측소의 지점강우를 활용하여 산정되고 있으며, 공간적 관측밀도의 제약이 정확한 ARF산정에 제약조건이 되고 있다. 본 연구에서는 레이더 강우관측을 활용하여 호우중심형의 ARF를 제시하고자 한다. 호우중심형 ARF (Storm-centered ARFs)산정 시 강우의 이동성, 방향성, 공간분포를 고려하기 위하여 강우사상별 강우형상에 따른 타원 장축의 방향성 결정, 강우형상에 따른 면적별 최적면적강우량을 산정하여 ARF를 제시하였다. 전선형에 비하여 태풍의 ARF값의 변동 폭이 작은 것을 알 수 있었고, 전선형은 지속시간에 따라 ARF가 증가하지만, 태풍의 경우에는 오히려 ARF가 감소하는 모습을 볼 수 있었다. 이 결과 지속시간이 비교적 짧은 1~3시간에서는 태풍 산바 사상의 ARF가 크게 산정되었으나, 지속시간이 긴 6~24시간에서는 ARF가 전선형 강우에 비해 작게 산정됨을 확인하였다.

Keywords

References

  1. Bacchi, B. and Ranzi, R. (1996). "On the derivation of the areal reduction factor of storms." Atmospheric Research, Vol. 42, No. 1, pp. 123-135. https://doi.org/10.1016/0169-8095(95)00058-5
  2. Bringi, V. N. and Chandrasekar, V. (2001). Polarimetric Doppler weather radar: principles and applications, Cambridge University Press, United Kingdom.
  3. Choi, W. S. (2012). Assessment of dual polarization radar on hydrology field, Master's theses, Sejong University, Seoul, South Korea (in Korean).
  4. Jeon, B. G., Lee, C. K. and Kim, Y. S. (2012). "Evaluation of rainfall measurement capability of dual polarization radar." Journal of Korea Society of Hazard Mitigation, Vol. 12, No. 2. pp. 215-224 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.2.215
  5. Jeong, J. Y., Yu, M. S. and Yi, J. E. (2014). "Runoff analysis using dual polarization radar and distributed Model." Journal of Korea Water Resources Association, Vol. 47, pp. 801-812 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.9.801
  6. Kang, M. Y., Jang, M., Lee, D. I., Seo, K. J., Kim, K. I., Yoo, C. H. and Kim, J. H. (2005). "Quantitative rainfall estimation using dual polarization radar." Journal of Korea Meteorological Society, Vol. 2005, pp. 154-155 (in Korean).
  7. Lee, D. Y. and Choi, H. K. (2007). "Comparison and ananlysis of peak flow by areal reduction factor." Journal of Industrial Technology, Vol. 27, No. A, pp. 95-102 (in Korean).
  8. Lee, J. H., Kim, D. G., Koh, W. J. and Lee, Y. Y. (2006). "Estimation of areal reduction factor for the younsan river basin." Journal of Korea Water Resources Association, Vol. 10, pp. 813-822 (in Korean).
  9. Lombardo, F., Napolitano, F. and Russo, F. (2006). "On the use of radar reflectivity for estimation of the areal reduction factor." Natural Hazards and Earth System Science, Vol. 6, No. 3, pp. 377-386. https://doi.org/10.5194/nhess-6-377-2006
  10. Marshall, J. S. and Palmer, W. M. K. (1948). "The distribution of raindrops with size." Journal of Meteorology, Vol. 5, No. 4, pp. 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  11. Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Improvement and supplement of probability rainfall, Ministry of Land, Transport and Maritime Affairs, Korea (in Korean).
  12. Ministry of Land, Transport and Maritime Affairs (MLTM) (2012). Guideline of design flood estimation, Ministry of Land, Transport and Maritime Affairs, Korea (in Korean).
  13. Olivera, F., Choi, J., Kim, D. and Li, M. H. (2008). "Estimation of average rainfall areal reduction factors in Texas using NEXRAD data." Journal of Hydrologic Engineering, Vol. 13, No. 6, pp. 438-448. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:6(438)
  14. Overeem, A., Buishand, T. A. and Holleman, I. (2009). "Extreme rainfall analysis and estimation of depth-duration-frequency curves using weather radar." Water Resources Research, Vol. 45, No. 10, W10424. https://doi.org/10.1029/2009WR007869
  15. Overeem, A., Buishand, T. A., Holleman, I. and Uijlenhoet, R. (2010). "Extreme value modeling of areal rainfall from weather radar." Water Resources Research, Vol. 46, No. 9, W09514. https://doi.org/10.1029/2009WR008517
  16. Ryzhkov, A. V., Giangrande, S. E. and Schuur, T. J. (2005). "Rainfall estimation with a polarimetric prototype of WSR-88D." Journal of Applied Meteorology, Vol. 44, No. 4, pp. 502-515. https://doi.org/10.1175/JAM2213.1
  17. Yoo, C. S. and Kim, K. J. (2004). "Estimation of areal reduction factor using a mixed distribution" Journal of Korea Water Resources Association, Vol. 37, No. 9, pp. 759-769 (in Korean). https://doi.org/10.3741/JKWRA.2004.37.9.759