Prediction of the Equivalent Coefficient of Thermal Expansion of Fiber Reinforced Plastic Lamina and Thermal Pointing Error Analysis of Satellites

섬유강화 복합재료 등가열팽창계수 예측 및 인공위성 열지향오차 해석

  • 유원영 (한국항공우주연구원 위성구조팀) ;
  • 임재혁 (한국항공우주연구원 위성구조팀) ;
  • 김선원 (한국항공우주연구원 위성구조팀) ;
  • 김창호 (한국항공우주연구원 위성구조팀) ;
  • 김성훈 (한국항공우주연구원 위성구조팀)
  • Received : 2014.05.09
  • Accepted : 2014.07.01
  • Published : 2014.07.01

Abstract

In this paper, the equivalent coefficient of thermal expansion (CTE) of fiber reinforced plastic composite material is investigated with various CTE prediction schemes. Although there are several methods for predicting the equivalent CTEs, most of them have some limitations of are not much accurate when comparing prediction results with test results. In the framework of computational homogenization, a representative volume element is taken from the predefined fiber-volume ratio, and modelled with finite element mesh. Finally, the equivalent CTEs are obtained by applying periodic boundary condition. To verify the performance of the proposed method, the results obtained are compared with those by the existing methods and test results. Additionally, the thermal pointing error analysis for star tracker support structure is conducted and its accuracy is estimated according to CTE prediction schemes.

본 연구에서는 다양한 열팽창계수 예측기법을 활용해서 섬유강화 복합재료 라미나 등가 열팽창계수 예측을 수행하였다. 등가열팽창계수를 예측하는 많은 식들이 제안되어 왔지만 사용대상에 따라 제약이 있거나, 예측결과가 시험결과와 잘 일치하지 않는 문제점을 갖고 있다. 본 연구에서 실제 복합재료 형상과 유사한 대표체적요소를 선정하여 유한요소 모델링을 수행하고 여기에 주기적 경계조건을 부여하여 재료의 등가열팽창계수를 예측하였다. 예측결과를 기존의 예측식 및 시험결과와 비교하여 그 성능을 검증하였으며, 별추적기 지지구조물의 열지향오차해석을 수행하고 다양한 예측물성을 따라 그 정확도를 검토하였다.

Keywords

References

  1. Son, T.-J., Na, K.-S., Kim, J.-W., Lim, J.H., and Kim, K.-W., "Design of a Structural Model for Korean Lunar Explorer," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 41, No.5, 2013, pp. 366-372. https://doi.org/10.5139/JKSAS.2013.41.5.366
  2. Kim, G.-S., "A Study on Thermal Vibration of Satellite with Multiple Flexible Appendage", Ph.D. Dissertation, Department of Mechanical Engineering, Chungnam National University.
  3. Nam, Y.-S., Oh, M. W., Kim, K.-S., and Cho, J.-Y., "Prediction of Thermal Expansion Coefficients for Fiber-Reinforced Composite by Direct Numerical Simulation," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 35, No.9, 2007, pp. 771-777. https://doi.org/10.5139/JKSAS.2007.35.9.771
  4. Kim, M.-J., Park, S.-H., Park, J.-S., Lee, W.-I., Kim, M.-S., "Micro-mechanical Failure Prediction and Verification for Fiber Reinforced Composite Materials by Multi-scale Modeling Method," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 41, No.1, 2013, pp. 17-24. https://doi.org/10.5139/JKSAS.2013.41.1.17
  5. Islam, M.D. R., Sjölind, S. G., and Pramila, A., "Finite Element Analysis of Linear Thermal Expansion Coefficients of Unidirectional Cracked Composites," Vol. 35, 2011, pp. 1764-1775.
  6. Jeong, J.-Y., and Ha, S.-K., "Analysis of Micromechanical Behavior of Fiber-Reinforced Composites," The Transactions of the Korean Society of Mechanical Engineers A, Vol. 28, N. 10, 2004, pp. 1435-1450. https://doi.org/10.3795/KSME-A.2004.28.10.1435
  7. Ha, S.-K., Jin, K.-K., and Huang, Y., "Micro-Mechanics of Failure(MMF) for Continuous Fiber Reinforced Composite," Journal of Composite Materials, Vol. 42, No. 18, 2008, pp. 1873-1895. https://doi.org/10.1177/0021998308093911
  8. Karadeniz, Z. H., Kumlutas, D., "A Numerical Study on the coefficients of thermal expansion of fiber reinforced composite materials," Composite Structures, Vol. 78, 2007, pp. 1-10.
  9. Yu, W., and Tang, T., "A Variational Asymptotic Micromechanics Model for Predicting thermoelastic properties of heterogeneous material," International Journal of Solid and Structures, Vol. 44, 2007, pp. 7510-7525. https://doi.org/10.1016/j.ijsolstr.2007.04.026
  10. Srisuk, N., "A micromechanical Models of Thermal Expansion Coefficients in Fiber Reinforced Composites", Master Thesis, Department of Aerospace Engineering, The University of Texas at Arlington.
  11. NYE, J. F., Physical Properties of Crystals, Oxford Science Publications, 1985
  12. Lee, D.-G., Jeong, M.-Y., Choi, J.-H., Jeon, S.-S., Jang, S.-H., and Oh, J.-H., Composite Materials, Hong-Reung Science Publications, 2007
  13. Schapery, R.A., "Thermal Expansion Coefficients of Composite Materials based on Energy Principles", Journal of Composite Materials, Vol. 2, No. 3, 1968, pp. 380-404. https://doi.org/10.1177/002199836800200308
  14. Chamberlain, N.J., "Derivation of Expansion Coefficients for a Fibre Reinforced Composite", BAC Report, SON(P), 33.
  15. Rosen, BW, and Hashin, Z, "Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials", International Journal of Engineering and Science, Vol. 8, 1970, pp. 157-173. https://doi.org/10.1016/0020-7225(70)90066-2
  16. Li, S. and Wang, G., "Introduction to Micromechanics and Nanomechanics," World Scientific Pub., 2008
  17. Toray Industries, Inc., http://www.torayca.com/en/index.html, 2014.
  18. Hexcel Corporation, http://www.hexcel.com, 2014.