

전기시사용어 해설 Smart 톡톡

직류배전 기술

지난 100여 년간 교류에 의한 전력 세상이 구축 되었으며 직류방식은 실생활 활용이 영원히 어려울 것으로 생각되었다. 하지만 21세기가 들어서면서 디지털기기의 보급과 신재생에너지의 확대 그리고 스마트그리드 등 구역 전기사업에 대한 지속적인 관심의 증대로 인해 직류가 다시 주목을 받고 있다.

직류전력을 출력하는 신재생에너지와 에너지 저장장치의 계통연계에 있어서 직류배전시스템의 효율성과 가격, 품질 등은 교류보다 월등히 뛰어 나다.

◆ 직류배전의 장점

○ 10~30%, 에너지 절감 효과

미국의 GOOGLE, 일본 NTT 등 서버를 운영

교류와 직류 비교

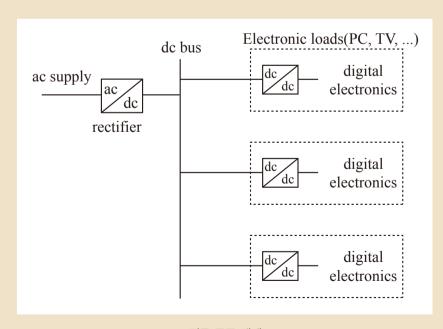
구분	교류시스템	직류시스템
전압변환	변압기 이용	전력변환장치 필요
송전방식	회전기를 위한 3상송전	2상송전
송전효율	낮음	매우 높음
보호기기	아크소호에 유리	아크소호에 불리
전력품질	EMC 증가	EMC 감소
절연비용	직류보다 1.4 필요	교류보다 저렴
에너지변환	손실 감소	손실 증가
분산전원연계	계통연계 복잡	계통연계 용이
안전	심실세동 위험 증가	심실세동 위험 감소
전자기파 영향	근접기기 유도 장해	유도장해 없음

하는 IDC 빌딩에서는 전원을 직류배전으로 적용하여 10~30%의 에너지 절감 효과를 내고 있으며, 우리나라의 KT도 남수원 IDC 센터에 직류배전을 적용하여 13.2%의 에너지 효율성 향상 효과를 거 두었다. 특히 일본 샤프와 TDK가 태양전지와 직류배전으로 가정에 공급하는 직류 Home 배전을 실시하였고 직류배전과 열병합발전과 고단열화를 실증하여 27%의 에너지 절감 효과를 얻었다.

○ 전력품질의 향상

무효전력이 없어져 송전효율이 좋아지고 리액턴 스와 위상각이 없어 안정도가 좋아진다. 또한 같은 전압 교류에 비해 안전하며 상용계통에서 유입 되는 서지, 노이즈 등 외란의 영향을 덜 받게 된다.

○ 융합경쟁력의 향상


신재생에너지에 직류배전시스템을 적용시키면

전력변환 감소로 에너지 효율이 약 10% 향상되며 전력변환 장치 제거를 통한 수변전 설비의 기존 설치 면적비가 50% 정도 소형화되어 큰 경쟁력을 갖추게 된다.

◆ 국내 연구개발 현황

정부에서는 직류배전에 관한 연구 및 실증을 지원하고 있다. 산업통상자원부의 지능형 전력망 (Smart Grid) 로드맵에 따르면 2020년까지 저압 DC 배전 시스템을 완성하고 2030년까지 고압 DC 배전 시스템을 완성하는 계획을 수립하였다.

아울러 K-MEG(Korea Micro Grid) 과제에서 대학교의 한 동에 DC 및 AC를 공급하는 프로젝트를 수행 중이며, 다양한 형태의 DC 가전이 접목되어 운영될 예정이다.

직류 공급 체계