SUYRFMUATS=EX| Mo M4s (K9-4-15)
HE| 0] A|ARIOA 2= S w2 HE WA S B3

*

21421

—

O
rio

3|

A Performance Evaluation of Parallel Color Conversion based on
the Thread Number on Multi-core Systems

Cheong Ghil Kim' Lifelong Members

L =
we) zo] TRAMY BF SO Aol YHTE AR Ausa glek e QWA YiFRe] AFY v
¥ 42e Bew sk Wevlte] $8& We| ;o] FAF JIwel WHsh st ¥ =RAAE W mo] CPUL ol§3
84 A AR AW 2dE FE 9E /18] A UL UFARAT 2UE 57 WA 55 Ae 50} T2
TR R FEY A2HAAE o 83 WY A Aeivelel K Yok B FHAN 2ds 7 gEske 7 s
e 98 948 agstel AAskat A BHE Slal 42 2 WA FAS Aole] A &we] Hlie])xste] tEA He
Zo] AN A BEE 913 A% P AEE B Avke AU fEe] WA FHd BAgle] e HE sojol 4
AWA O WST A e &S nelF,

Key Words : paralle processing, thread-level parallelism, multi-core processor, color conversion, performance evaluation,
pre-processing.

ABSTRACT . .

With the increasing popularity of multi-core processors, they have been adopted even in embedded systems. Under this
circumstance many multimedia applications can be parallelized on multi-core platforms because they usually require heavy
computations and extensive memory accesses. This paper proposes an efficient thread-level parallel implementation for color
space conversion on multi-core CPU. Thread-level parallelism has been becoming very useful parallel processing paradigm
especially on shared memory computing systems. In this work, it is exploited by allocating different input pixels to each
thread for concurrent loop executions. For the performance evaluation, this paper evaluate the performace improvements for
color conversion on multi-core processors based on the processing speed comparison between its serial implementation and
parallel ones. The results shows that thread-level parallel implementations show the overall similar ratios of performance
improvements regardless of different multi-cores.

I. Introduction
With the rapid development of technology of CPU,
multi-core processor architecture has emerged as a
dominant market trend in desk-top PCs as well as
embedded systems. This movement enables a single chip
to increase the performance capability without requiring a

complex system and increasing the power requirements

[1,2].

In this situation, another solution to increase PC
performance could be achieved by taking advantage of
parallelism in software rather than depending on hardware
technologies. Therefore, parallel programming becomes an
important issue of multi-core systems [34] because it
allows full use of the market dominant hardware systems.

Especially, thread-level parallelism has been becoming

R ERe 2014dE dASEE miaT] Aol ofstel AL

“FAerstn 7 EEsly) (cgkim@nsu.ac.kr)

4ol 1 20149 109 239, AR R) : 20149 119 102, HEANEAAR : 20144 19 172

73

HOZMAATE =2 HOH HM4Z

very useful parallel processing paradigm especially on
shared memory computing systems with multi-core
processors [5,6].

This paper introduces an efficient thread-level parallel
implementation for color space conversion on different
multi-core processors. For this purpose, we allocate
different input pixels to each thread by partitioning an
image into multiple segments. The performance evaluation
is made by comparing the processing speedup between its
serial implementation and parallel ones.

The organization of this paper is as follows. Section 2
introduces the background of color conversion and
thread-level the
implementation parallel color conversion. Section 4 covers

parallelism. Section 3 discusses

the results of simulation about the implementation of

parallel color conversion on different multi-core
processors. In section 5, we conclude our result and

discuss further perspectives.

I. Background

Digital color images are represented as a set of three
components representing the intensities of each of the
three primaries: red, green, and blue (RGB). The color
space obtained through combining the three colors can be
determined by drawing a triangle on a special color chart
with each of the base colors as an endpoint. Using the CIE
chart as a guideline, NTSC defines the transmission of
color signals in a luminance and chrominance format
called YIQ. The YUV format, a variant of the YIQ format,
concentrates most of the image information into the
luminance (Y) and less in the chrominance (UV), allowing
the chrominance to be specified less frequently than the

luminance [7].

Colorspace

. Downsamplin
Conversion piing

Color
Quantization

Entropy Decoding
(Huffman)

Compressed JPEG

DCT
Image

Fig. 1. Color conversion on JPEG

Therefore, in most color image and video compression
algorithms, only every other U and V elements in the
horizontal direction are sampled (4:2:2 format). The

74

missing elements are reconstructed by either interpolation
or duplication.

Figure 1 shows the basic JPEG compression method; it
can be summarized as following: (1) the image is
separated into three color components; (2) each component
is partitioned into 8-by-8 blocks; (3) each block is
transformed using the two dimensional DCT (Discrete
(4) each transformed block

quantized with respect to an 8-by-8 quantization matrix;

Cosine Transform); is
(5) the resulting data is compressed, using Huffman or
arithmetic coding.

In order to achieve good compression performance,
correlation between the color components is first reduced
by converting the RGB color space into a de—correlated
color space. In baseline JPEG, a RGB image is first
transformed into a luminance-chrominance color space
such as luminance-chrominance (L.-C) color space such as
YChCr, YUV, CIELAB, etc [8].

Multithreaded

Single-Threaded
ingle-Threade Process Model

Process Model
Thread Thread Thread

Thread
Control
Block

Thread

I

|1l Thread
Control !

I

I

Control

User
Stack

Process
Control

Block Block

Block

Process
Control
Block

Kernel
Stack

User

[
i
i
[
i
[
i
[
|
User |
! Stack
[
i
i
[
[
i
[
i
[
i
i

Stack

User

1]

1]

1]

1|

1]

1]

1]

I

¥
Process |
Stack o
I
1
I
i
1
I
1
I
1
1
i
1

|
|
|
|
|
|
|
|
|
|
|
|
Control |
|
|
|
I\
|
|
|
|
|
|
|
i

Black

Kernel
Stack

Kernel
Stack

Kemel
Stack

Process
Control
Block

Fig. 2. Thread execution model

A thread is a lightweight process having its own
program counter and execution stack as shown in Fig. 2.
It shows the comparison between single-threaded and
multi-threaded processing model. The model is very
flexible, but low level, and is usually associated with

shared memory and operating systems [4].

Il. Parallel Implementation

The actual conversion between the standard RGB
format to the YUV format and vice-versa is slightly
different for digital signals than for analog signals. The
digital conversion requires that if the RGB values are
between 0 and 255, the YUV values should also be
between 0 and 255. Fig. 3 shows the block diagram of
color conversion between RGB and YUV.

74

HE|ZO| AAHIOIAM MY = 40f MHE HE MHS M5 A

or
0l

Fig. 3. Conversion between RGB and YUV

This method can be achieved by performing a matrix
transformation of R, G, and B pixel data of a set of
possible R, G, and B parameters into corresponding Y, U,
and V parameters. This process is based on the bellowing

mathematical expression:

=10.299 0587 0.114][R (1
0.148 —0.289 0439||G]
0615 —0.515 —0.1]|B

The value Y = 029R + 0587G + 0.114B is called the
luminance. The formula is like a weighted-filter with
different
Accordingly, the inverse transformation from YUV to
RGB can be:

weights for each spectral component.

R|=11.0 0.0 1.13983 2)
G 1.0 —0.39465 —0.58060| | U]
B 1.0 2.03211 0.0
{Mindows Thread
DWORD WINAPI threadwork(LPVOID arg)
{
struct threadposition =tp = (struct threadposition *)arg:
for(int i = tp-»starty: i < tp->endy: i+4){
for{int | = tp->startx; | < tp->endx; |++){
double y = int2yli_r[i]lj], iglillj], 1 bLITLiT:
dounle u = int2uli_blilljl, v);
double v = int2vli_r[i]lj], v):
dylillj] = y:
dulilljl = u
dvlillj] = v
1
}
threadStatus[tp->threadnum] = true
return 0;
}

Fig. 4. Thread code block

Thread-level parallel implementation for the above
equations is achieved by allocating different input pixels to
each thread using Window Thread. Figure 4 shows the
block related with thread The

CreateThread function creates a new thread for a process

code functions.
shown in Figure 5. The creating thread must specify the
starting address of the code that the new thread is to
execute. Typically, the starting address is the name of a

75

function defined in the program code This function takes

a single parameter and returns a DWORD value. A

process can have multiple threads simultaneously
executing the same function.
Main Main Routine
Thread Routine Thread
) —

Fig. 5. Thread creations

IV. Simulation Results

This section describes the implementation environments
and results in detail. For the performance evaluation of
thread-level parallelled color space conversion over its
serial one, the processing time was measured using three
different thread numbers such as one, four, and eight
threads. They are denoted as Thread 1, Thread 4, and
Thread 8, respectively. Table 1 describes the specification
of four multi-core systems.

As for the number of thread, we used 4 and 8 threads.
Fig. 6 shows the processing times on four multi-core
processors based on the number of threads. The results
show 2 times of performance improvements on the
processing speed compared with the serial implementation.
Fig. 7 shows the improvement ratio with increasing the
number of threads. The result shows that when thread
number is same as the number of cores, the ratio becomes
high.

Table 1. Simulation environment

Model Specification
i3 4 core, 16GB RAM SSD
i) 4 core, 4GB RAM HDD
i7 4 core, 4GB RAM HDD
Phenom 960T 4 core, 4GB RAM HDD

V. Conclusion

In general, color space conversion has become a very

important role in the image acquisition, display and the

opm
(o
do
0x
fob

SFMAATFS=2X] HOH M4ZE

transmission of the color information. With the poularity
of multi—core processors, thread-level parallelism has been
becoming very useful parallel processing paradigm
This
paper experiments the performance of JPEG color space
conversion of RGB to YUV using thread-level parallel

implementation on different multi-core processors. The

especially on shared memory computing systems.

implementation results show 2 times of performance
improvements on the processing speed compared with the
serial implementation and all multi-cores show similar

performance improvement ratios.

EThreadl EWThread4 ®Thread8

i3 i5 7

Phenom 960T
Fig. 6. Processing speed

10

Thread1 Thread 4 dg

— |3 —5 — Phenom S60T

Fig. 7. Performance improvements ratio

References

[1] Cheong Ghil Kim, "Parallel SAD for Fast Dense Disparity
Map Using a Shared Memory Programming”, Information
Technology Convergence, Vol. 2, pp. 1055-1060, Jul. 2013.

[2] Cheong Ghil Kim, Do Hyun Lee, JeomGu Kim, "Optimizing
Image Processing on Multi-core CPUs with Intel Parallel
Programming Technologies,” Multimedia Tools
Applications January 2014, Vol. 68, Issue 2, pp 237-251, Jan.
2014.

[3] E. Ajkunic, H Fatkic, E. Omerovic, K. Talic, and N.
Nosovic, "A Comparison of Five Parallel Programming
Models for C++”, in Proc. of 35th Intl Convention on
Information and Communication Technology, Electronics

and

76

and Microelectronics (MIPRO 2012), May 2012, pp. 1780 -
1784, 2012.

[4] Javier Diaz, Camelia Mun oz-Caro, and Alfonso Nino, "A
Survey of Parallel Programming Models and Tools in the
Multi and Many-Core Era”, IEEE Transactions on Parallel
and Distributed Systems, VOL. 23, NO. 8 pp. 1369-1386,
Aug. 2012.

[5] Simone Campanoni, Timothy M. Jones, Glenn Holloway,
Gu-Yeon Wei, and David Brooks, "Helix: Making the
Extraction of Thread-Level Parallelism Mainstream”, IEEE
Micro, Volume: 32 , Issue: 4, pp. 8 — 18, 2012

[6] Dongrui Fan, Hao Zhang, Da Wang, Xiaochun Ye, Fenglong
Song, Guojie Li, and Ninghui Sun, "Godson-T: An Efficient
Many-Core Processor Exploring Thread-Level Parallelism”,
IEEE Micro, Volume: 32 , Issue: 4, pp. 38 — 47, 2012.

[7] Benjamin Gordon, Navin Chaddha and Teresa Meng, "A
Low-Power Multiplierless YUV to RGB Converter Based on
Human Vision Perception,” Workshop on VLSI Signal
Processing, VII, pp. 408 - 417, Oct 1994.

[8] T. Acharya and P. Tsai, “JPEG: Still Image Compression
Standard,” in JPEG2000 standard for image compression :
concepts, algorithms and VLSI architecturcs, John Wiley &
Sons, Inc., Hoboken, New Jersey, 2005.

PN
Z & Z(Cheong Ghil Kim) Sil=lE

- 19871 8€ : Univ. of Redlands, USA
AFE AT ALY

2003 8¢ : AAE L HFE ek
AL =4

- 20060 8¢ At gL
IF AL &

- 20061 ~ 2007 AM L 7 FE F8t BRALS At

2007 ~ 2008 : AMst AFE ARSI AFug

-2008 ~ @A A S AFE S
<A HEP Yo dutj= Al2F o]7]F AFH,
Znkd AR, 3D Contents

o+

2

3}

£

o

i)
3

