Applications of Non-Thermal Atmospheric Pressure Plasma in Dentistry

상온 대기압 플라즈마의 치의학적 응용

  • Uhm, Soo-Hyuk (Department and research institute of dental biomaterials and bioengineering, Yonsei university college of dentistry) ;
  • Kwon, Jae-Sung (Department and research institute of dental biomaterials and bioengineering, Yonsei university college of dentistry) ;
  • Lee, Eun-Jung (Department and research institute of dental biomaterials and bioengineering, Yonsei university college of dentistry) ;
  • Lee, Jung-Hwan (Department and research institute of dental biomaterials and bioengineering, Yonsei university college of dentistry) ;
  • Kim, Kyoung-Nam (Department and research institute of dental biomaterials and bioengineering, Yonsei university college of dentistry)
  • 엄수혁 (연세대학교 치과대학 치과생체재료공학교실 및 연구소) ;
  • 권재성 (연세대학교 치과대학 치과생체재료공학교실 및 연구소) ;
  • 이정환 (연세대학교 치과대학 치과생체재료공학교실 및 연구소) ;
  • 이은정 (연세대학교 치과대학 치과생체재료공학교실 및 연구소) ;
  • 김경남 (연세대학교 치과대학 치과생체재료공학교실 및 연구소)
  • Received : 2014.11.18
  • Accepted : 2014.11.25
  • Published : 2014.12.01

Abstract

Since the introduction of non-thermal atmospheric pressure plasma in the field of the dentistry, numerous applications have been investigated. Especially with its advantages over existing vacuum plasma in terms of portability, low cost, and non-thermal damage, it can be directly applied in the oral cavity, giving number of potentials for dental application. First, possible application of non-thermal atmospheric pressure plasma in the field of dentistry is relation to dental caries and periodontal diseases. Teeth and alveolar bones are one of the strongest bony structures in our body, but it cannot be regenerated when they are damaged by dental caries or periodontal disease. Hence many studies to prevent such diseases have been carried out, though no perfect solution has been found yet. With recent studies of modifying surfaces through non-thermal atmospheric pressure application that can prevent attachment of bacteria, or studies on bactericidal effects of non-thermal atmospheric pressure plasma can be applied here to prevent oral pathogen and 'biofilm' attachment to the surface of teeth or directly eliminate the dental caries/periodontal disease causing germs. Secondly, non-thermal atmospheric pressure application will be useful on the surface of dental implant. It is well known that the success of dental implant surgery depends on the process known as 'osseointegration' that result from osteoblast attachment, proliferation and differentiation. As the application of non-thermal atmospheric pressure plasma on the surface of dental implant just before its introduction by the chair-side of dental surgery. Despite its long history, the generation of non-thermal atmospheric pressure plasma has been greatly increased with its application in dentistry.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Crookes W. On radiant matter spectroscopy: a new method of spectrum analysis. Proc R Soc 1983;35:262-267.
  2. Heinlin J, Isbary G, Stolz W, Morfill G, Landthaler M, Shimizu T, et al. Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol Venereol 2011;25:1-11.
  3. Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann JL, et al. Plasma medicine: possible applications in dermatology. J Deutsch Dermatol Ges 2010;8:968-976.
  4. von Woedtke T, Metelmann HR. Editorial. Clin Plasma Med 2013;1:1-2. https://doi.org/10.1016/j.cpme.2013.03.001
  5. Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett 2005;87:113902. https://doi.org/10.1063/1.2045549
  6. Stoffels E, Kieft IE, Sladek REJ, van dem Bedm LJM, van der Laan EP,Seinbuch M. Plasma needle for in vivo medical treatment: recent development sand perspectives. Plasma Source Sci Technol 2006;15:S169-180. https://doi.org/10.1088/0963-0252/15/4/S03
  7. Yu QS, Huang C, Hsieh FH, Huff H, Duan YX. Sterilization effects of atmospheric cold plasma brush. Appl Phys Lett 2006;88:013903. https://doi.org/10.1063/1.2161807
  8. Kolb JF, Mohamed AAH, Price RO, Swanson RJ, Bowman A, Chiavarini RL, et al. Appl Phys Lett 2008;92:241501. https://doi.org/10.1063/1.2940325
  9. Lee UH, Jeong YS, Koh KN, Jeong SY, Kim HG, Bae JS, Cho CR. Contribution of power on cell adhesion using atmospheric dielectric barrier discharge (DBD) plasma system. Curr Appl Phys 2009;9:219-223. https://doi.org/10.1016/j.cap.2008.01.014
  10. Jiang C, Chen MT, Gorur A, Schaudinn C, Jaramillo DE, Costerton JW, et al. Nanosecond pulsed plasma dental probe. Plasma Process Polym 2009;6:479-483. https://doi.org/10.1002/ppap.200800133
  11. Grossner-Schreiber B, Teichmann J, Hannig M, Dorfer C, Wenderoth DF, Ott SJ. Modified implant surfaces show different biofilm compositions under in vivo conditions. Clini Oral Implants Res 2009;20:817-826. https://doi.org/10.1111/j.1600-0501.2009.01729.x
  12. Yamazaki H, Ohshima T, Tsubota Y, Yamaguchi H, Jayawardena JA, Nishimura Y. Microbicidal activities of low frequency atmospheric pressure plasma jets on oral pathogens. Dent Mater J 2011;30:384-391. https://doi.org/10.4012/dmj.2010-190
  13. Yoo EM, Uhm SH, Kwon JS, Choi HS, Choi EH, Kim KM, Kim KN. The Study on Inhibition of Streptococcus mutans and Staphylococcus aureus Growth by Non-Thermal Atmospheric Pressure Plasma Jet Treated Surfaces for Dental Application. J Biomed Nanotechnol 2015;11:334-341. https://doi.org/10.1166/jbn.2015.2030
  14. Mellado-Valero A, Buitrago-Vera P, Sola-Ruiz MF, Ferrer-Garcia JC. Decontamination of dental implant surface in peri-implantitis treatment: a literature review. Med Oral Patol Oraly Cirugia Bucal 2013;18:e869-876.
  15. Claffey N, Clarke E, Polyzois I, Renvert S. Surgical treatment of peri-implantitis. J Clin Periodontol 2008;35:316-332. https://doi.org/10.1111/j.1600-051X.2008.01277.x
  16. Fricke K, Koban I, Tresp H, Jablonowski L, Schroder K, Kramer A, et al. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PloS ONE 2012;7:e42539. https://doi.org/10.1371/journal.pone.0042539
  17. Rupf S, Idlibi AN, Marrawi FA, Hannig M, Schubert A, von Mueller L, et al. Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology. PloS ONE2011;6:e25893. https://doi.org/10.1371/journal.pone.0025893
  18. Naitali M, Kamgang-Youbi G, Herry JM, Bellon-Fontaine MN, Brisset JL. Combined effects of longliving chemical species during microbial inactivation using atmospheric plasma-treated water. Appl Environ Microbiol 2010;76:7662-4. https://doi.org/10.1128/AEM.01615-10
  19. Dobrynin D, Fridman G, Friedman G, Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 2009;11:115020. https://doi.org/10.1088/1367-2630/11/11/115020
  20. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral pathol Oral Radiol Endodont 1998;85:86-93. https://doi.org/10.1016/S1079-2104(98)90404-8
  21. Cao Y, Yang P, Lu X, Xiong Z, Ye T. Efficacy of atmospheric pressure plasma as an antibacterial agent against Enterococcus Faecalis in vitro. Plasma Sci Technol 2011;13(1):93-98. https://doi.org/10.1088/1009-0630/13/1/19
  22. Yan X, Xiong Z, Zou F, Zhao S, Lu X, Yang G, He G, Ostrikov K. Plasma-induced death of HepG2 cancer cells: intracellular effects of reactive species. Plasma Process Polym 2012;9:59-66. https://doi.org/10.1002/ppap.201100031
  23. Coutinho DS, Silveira Jr. L, Nicolau RA, Zanin F, Brugnera Jr. A. Comparison of temperature increase in in vitro human tooth pulp by different light sources in the dental whitening process. Lasers Med Sci 2009;24:179-185. https://doi.org/10.1007/s10103-008-0546-2
  24. Luk K, Tam L, Hubert M. Effect of light energy on peroxide tooth bleaching. J Am Dent Assoc 2004;135:194-201;quiz228-229. https://doi.org/10.14219/jada.archive.2004.0151
  25. Jones AH, Diaz-Arnold AM, Vargas MA, Cobb DS. Colorimetric assessment of laser and home bleaching techniques. J Esthet Dent 1999;11:87-94. https://doi.org/10.1111/j.1708-8240.1999.tb00382.x
  26. Lee HW, Kim GJ, Kim JM, Park JK, Lee JK, Kim GC. Tooth bleaching with nonthermal atmospheric pressure plasma. J Endodont 2009;35:587-591. https://doi.org/10.1016/j.joen.2009.01.008
  27. Lee JH, Kwon JS, Om JY, Kim YH, Choi EH, Kim KM, Kim KN. Cell immobilization on polymer by air atmospheric pressure plasma jet treatment. Jpn J Appl Phys 2014;56:086202.
  28. Lee JH, Kim YH, Choi EH, Kim KM, Kim KN. Air atmospheric-pressure plasma-jet treatment enhances the attachment of human gingival fibroblasts for early peri-implant soft tissue seals on titanium dental implant abutments. Acta Odontol Scand 2014, Article in Press (Online Published).
  29. Lee JH, Kwon JS, Kim YH, Choi EH, Kim KM, Kim KN. The effects of enhancing the surface energy of a polystyrene plate by air atmospheric pressure plasma jet on early attachment of fibroblast under moving incubation. Thin Sold Films 2013;547:99-105. https://doi.org/10.1016/j.tsf.2013.04.105
  30. Kwon JS, Kim YH, Choi EH, Kim KN. The effects of non-thermal atmospheric pressure plasma jet on attachment of osteoblast. Curr Appl Phys 2013;13:S42-S47. https://doi.org/10.1016/j.cap.2012.12.022
  31. Jimbo R, Sawase T, Baba K, Kurogi T, Shibata Y, Atsuta M. Enhanced initial cell responses to chemically modified anodized titanium. Clin Implant Dent Relat Res 2008;10:55-61. https://doi.org/10.1111/j.1708-8208.2007.00061.x
  32. Coelho PG, Lemons JE. Physico/chemical characterization and in vivo evaluation of nanothickness bioceramic depositions on aluminablasted/acid-etched Ti-6Al-4V implant surfaces. J Biomed Mater Res Part A 2009;90:351-361.
  33. Lee EJ, Kwon JS, Uhm SH, Song DH, Kim YH, Choi EH, Kim KN. The effects of non-thermal atmospheric pressure plasma jet on cellular activity at SLA-treated titanium surfaces. Curr Appl Phys 2013;13:S36-S41. https://doi.org/10.1016/j.cap.2012.12.023
  34. Lee EJ, Kwon JS, Om JY, Moon SK, Uhm SH, Choi EH, Kim KN. The enhanced integrin-mediated cell attachment and osteogenic gene expression on atmospheric pressure plasma jet treated microstructured titanium surfaces. Curr Appl Phys 2014;14:S167-S171. https://doi.org/10.1016/j.cap.2013.12.033
  35. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 1955;34:849-853. https://doi.org/10.1177/00220345550340060801
  36. Kanca 3rd J. Improving bond strength through acid etching of dentin and bonding to wet dentin surfaces. J Am Dent Assoc 1992;123:35-43. https://doi.org/10.14219/jada.archive.1992.0248
  37. Akgungor G, Sen D, Aydin M. Influence of different surface treatments on the short-term bond strength and durability between a zirconia post and a composite resin core material. J Prosthet Dent 2008;99:388-399. https://doi.org/10.1016/S0022-3913(08)60088-8
  38. Valverde GB, Coelho PG, Janal MN, Lorenzoni FC, Carvalho RM, Thompson VP, et al. Surface characterisation and bonding of Y-TZP following nonthermal plasma treatment. J Dent 2013;41:51-59. https://doi.org/10.1016/j.jdent.2012.10.002
  39. Piascik JR, Swift EJ, Braswell K, Stoner BR. Surface fluorination of zirconia: adhesive bond strength comparison to commercial primers. Dent Mater 2012;28:604-608. https://doi.org/10.1016/j.dental.2012.01.008
  40. Silva NRFA, Coelho PG, Valverde GB, Becker K, Ihrke R, Quade A, et al. Surface characterization of Ti and Y-TZP following non-thermal plasma exposure. J Biomed Mater Res Part B 2011;99B:199-06. https://doi.org/10.1002/jbm.b.31887
  41. Eisner CB, Espey M, Ow H, Wang KW, Wiesner U, Schnermann J. Measurement of plasma volume using nanoparticles in mice. FASEB J 2009;23:681-687.
  42. Peutzfeldt A, Sahafi A, Asmussen E. Characterization of resin composites polymerized with plasma arc curing units. Dent Mater 2000;16:330-336. https://doi.org/10.1016/S0109-5641(00)00025-7
  43. Shibata Y, Hosaka M, Kawai H, Miyazaki T. Glow discharge plasma treatment of titanium lates enhances adhesion of osteoblast-like cells to the plates through the integrin-mediated mechanism. Int J Oral Maxillof Implants 2002;17:771-777.
  44. Park YS, Yi KY, Lee IS, Han CH, Jung YC. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int J Oral Maxillof Implants 2005;20:31-38.
  45. Lee JH, Kwon JS, Kim YH, Choi EH, Kim KM, Kim KN. Air Atmospheric Pressure Plasma Jet Pretreatment for Drop Wise Loading of Dexamethasone on Hydroxyapatite Scaffold for Increase of Osteoblast Attachment. J Nanosci Nanotechno 2014;14:7654-7661. https://doi.org/10.1166/jnn.2014.9414
  46. Ayliffe G. Decontamination of minimally invasive surgical endoscopes and accessories. J Hosp Infect 2000;45:263-277. https://doi.org/10.1053/jhin.2000.0767
  47. Herrmann HW, Henins I, Park J, Selwyn GS. Decontamination of chemical and biological warfare, (CBW) agents using an atmospheric pressure plasma jet (APPJ). Phys Plasmas 1999;6:2284-2289. https://doi.org/10.1063/1.873480
  48. Chong YH, Soh G, Setchell DJ, Wickens JL. Relationship between contact angles of die stone on elastomeric impression materials and voids in stone casts. Dent Mater 1990;6:162-166. https://doi.org/10.1016/0109-5641(90)90022-7
  49. Kwon JS, Kim YH, Choi EH, Kim KN. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a nonthermal atmospheric-pressure plasma jet. J Phys D: Appl Phys 2013;46:195201. https://doi.org/10.1088/0022-3727/46/19/195201
  50. Gombotz WR, Hoffman AS. Gas-discharge techniques for biomaterial modification. Crit Rev Biocompat 1987;4:1-42.
  51. Lee JH, Kim YH, Choi EH, Kim KM, Kim KN. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet. J Phys D: Appl Phys 2014;47:235402. https://doi.org/10.1088/0022-3727/47/23/235402
  52. Kim GC, Lee HW, Byun JH, Chung J, Jeon YC, Lee JK. Dental applications of low-temperature nonthermal plasmas. Plasma Process Polym 2013;10:199-206. https://doi.org/10.1002/ppap.201200065
  53. Smitha T, Chaitanya Babu N. Plasma in dentistry: an update. Indian J Dent Adv 2010;2:210-214.