References
- Abdel-Wahab, A.A. and Silberschmidt, V.V. (2011), "Numerical modeling of impact fracture of cortical bone tissue using X-FEM", J. Theor. Appl. Mech., 49(3), 599-619.
- Baca, V., Horak, Z., Mikulenka, P. and Dzupa, V. (2008), "Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses", Med. Eng. Phys., 30, 924-930. https://doi.org/10.1016/j.medengphy.2007.12.009
- Bayraktar, H.H., Morgan, E.F., Niebur G.L., Morris, G.E., Wong, E.K. and Keaveny, T.M. (2004), "Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue", J. Biomech., 37, 27-35. https://doi.org/10.1016/S0021-9290(03)00257-4
- Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K. and Nakamura, K. (2007), "Prediction of strength and strain of the proximal femur by a CT-based finite element method", J. Biomech., 40, 1745-1753. https://doi.org/10.1016/j.jbiomech.2006.08.003
- Burr, D.B. (1993), "Remodeling and the repair of fatigue damage", Calcified Tissue Int., 53(1), S75-S81. https://doi.org/10.1007/BF01321881
- Cody, D.D., Gross, G.J., Hou, F.J., Spencer, H.J., Goldstein, S.A. and Fyhrie, D. (1999), "Femoral strength is better predicted by finite element models than QCT and DXA", J. Biomech., 32, 1013-1020. https://doi.org/10.1016/S0021-9290(99)00099-8
- Currey, J.D. (1990), "Physical characteristics affecting the tensile failure properties of compact bone", J. Biomech., 23(8), 837-844. https://doi.org/10.1016/0021-9290(90)90030-7
- Currey, J.D. (2002), Bones: Structure and mechanics, Princeton University Press, Princeton.
- Chaboche, J.L. (1981), "Continuum damage mechanics a tool to describe phenomena before crack initiation", Nucl. Eng. Des., 64, 233-247. https://doi.org/10.1016/0029-5493(81)90007-8
- Crawford, R.P., Cann, C.E. and Keaveny, T.M. (2003), "Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography", Bone, 33, 744-750. https://doi.org/10.1016/S8756-3282(03)00210-2
- Dragomir-Daescu, D., Op Den Buijs, J., McEeligot, S., Dai, Y., Entwistle, R.C., Salas, C., Melton, III J., Bennet, E., Khosla, S. and Amin, S. (2010), "Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip", Ann. Biomed. Eng., 39(2), 742-755.
- Ford, C.M., Keaveny, T.M. and Hayes, W.C. (1996), "The effect of impact direction on the structural capacity of the proximal femur during falls", J. Bone Miner. Res., 11, 377-383.
- Garden, R. (1961), "Low-angle fixation in fractures of the femoral neck", J. Bone Joint Surg. Br., 43, 647-661.
- Hambli, R., Bettamer, A. and Allaoui, S. (2012), "Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage", Med. Eng. Phys., 34(2), 202-210. https://doi.org/10.1016/j.medengphy.2011.07.011
- Hambli, R. (2011a), "Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation", Int. J. Numer. Method. Biomed. Eng., 27(4), 461-475. https://doi.org/10.1002/cnm.1413
- Hambli, R. (2011b), "Apparent damage accumulation in cancellous bone using neural networks", J. Mech. Behav. Biomed. Mater., 4(6),868-878. https://doi.org/10.1016/j.jmbbm.2011.03.002
- Juszczyk, M.M., Cristofolini, L. and Viceconti, M. (2011), "The human proximal femur behaves linearly elastic up to failure under physiological loading conditions", J. Biomech., 44(12), 2259-2266. https://doi.org/10.1016/j.jbiomech.2011.05.038
- Kaneko, T.S., Pejcic, M.R., Tehranzadeh, J. and Keyak, J.H. (2003), "Relationships between material properties and CT scan data of cortical bone with and without metastatic lesions", Med. Eng. Phys., 25(6), 445-454. https://doi.org/10.1016/S1350-4533(03)00030-4
- Kotha, S.P. and Guzelsu, N. (2003), "Tensile damage and its effects on cortical bone", J. Biomech., 36(11), 1683-1689. https://doi.org/10.1016/S0021-9290(03)00169-6
- Keaveny, T.M., Wachtel, E.F., Ford, C.M. and Hayes, W.C. (1994), "Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus", J. Biomech., 27, 1137-1146. https://doi.org/10.1016/0021-9290(94)90054-X
- Keaveny, T.M., Wachtel, E.F. and Kopperdahl, D.L. (1999), "Mechanical behavior of human trabecular bone after overloading", J. Orthopaed. Res., 17, 346-353. https://doi.org/10.1002/jor.1100170308
- Keaveny, T.M., Morgan, E.F., Niebur, G.L. and Yeh, O.C. (2001), "Biomechanics of trabecular bone", Ann. Biomed. Eng., 3, 307-333. https://doi.org/10.1146/annurev.bioeng.3.1.307
- Keyak, J.H. (2001), "Improved prediction of proximal femoral fracture load using nonlinear finite element models", Med. Eng. Phys., 23, 165-173. https://doi.org/10.1016/S1350-4533(01)00045-5
- Keyak, J.H. and Falkinstein, Y. (2003), "Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load", Med. Eng. Phys., 25, 781-787. https://doi.org/10.1016/S1350-4533(03)00081-X
- Link, M., Vieth, V., Langenberg, R., Meier, N., Lotter, A., Newitt, D. and Majumdar, S. (2003), "Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD", Calcified Tissue Int., 72,156-165. https://doi.org/10.1007/s00223-001-2132-5
- Lemaitre, J. (1985), "A continuous damage mechanics model for ductile fracture", J. Eng. Mater. Technol., 107, 83-89. https://doi.org/10.1115/1.3225775
- Lotz, J.C, Cheal, E.J. and Hayes, W.C. (1991a), "Fracture prediction for the proximal femur using finite element models: Part I - Linear analysis", J. Biomech. Eng., 113, 353-360. https://doi.org/10.1115/1.2895412
- Lotz, J.C., Cheal, E.J. and Hayes, W.C. (1991b), "Fracture prediction for the proximal femur using finite element models: Part II - Nonlinear analysis", J. Biomech. Eng., 113, 361-365. https://doi.org/10.1115/1.2895413
- Lotz, J.C., Cheal, E.J. and Hayes, W.C. (1995), "Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture", Osteopor Int., 5, 252-261. https://doi.org/10.1007/BF01774015
- Malik, L., Stover, M., Martin, B. and Gibeling, C. (2003), "Equine cortical bone exhibits rising R-curve fracture mechanics", J. Biomech., 36, 191-198. https://doi.org/10.1016/S0021-9290(02)00362-7
- Mazars, J. and Pijaudier-Cabot, G. (1996), "From damage to fracture mechanics and conversely: A combined approach", Int. J. Solid Struct., 33, 3327-3342. https://doi.org/10.1016/0020-7683(96)00015-7
- Nagaraja, S., Couse, T.L. and Guldberg, R.E. (2005), "Trabecular bone microdamage and microstructural stresses under uniaxial compression", J. Biomech., 38, 707-716. https://doi.org/10.1016/j.jbiomech.2004.05.013
- Nalla, K., Kruzic, J., Kinney, H. and Ritchie, O. (2005), "Mechanistic aspects of fracture and R-curve behavior in human cortical bone", Biomater., 26, 217-231. https://doi.org/10.1016/j.biomaterials.2004.02.017
- Ota, T., Yamamoto, I. and Morita, R. (1999), "Fracture simulation of femoral bone using finite-element method: How a fracture initiates and proceeds", J. Bone Miner. Metab., 17(2), 108-112. https://doi.org/10.1007/s007740050072
- Pattin, C.A., Caler, W.E. and Carter, D.R. (1996), "Cyclic mechanical property degradation during fatigue loading of cortical bone", J. Biomech., 29, 69-79. https://doi.org/10.1016/0021-9290(94)00156-1
- Parsamian, G.P. (2002), Damage mechanics of human cortical bone: Phd, College of Engineering and Mineral Resources at West Virginia University.
- Peng, L., Bai, J., Zeng, X. and Zhou, Y. (2006), "Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions", Med. Eng. Phys., 28, 227-233. https://doi.org/10.1016/j.medengphy.2005.06.003
- Reilly, D.T. and Burstein, A.H. (1974), "Review article. The mechanical properties of cortical bone", J. Bone Jt. Surg. Am., 56, 1001-1022. https://doi.org/10.2106/00004623-197456050-00012
- Reilly, D.T. and Burstein, A.H. (1975), "The elastic and ultimate properties of compact bone tissue", J. Biomech., 8, 393-405. https://doi.org/10.1016/0021-9290(75)90075-5
- San Antonio, T., Ciaccia, M., Müller-Karger, C. and Casanova, E. (2012), "Orientation of orthotropic material properties in a femur FE model: A method based on the principal stresses directions", Med. Eng. Phys., 34(7), 914-919. https://doi.org/10.1016/j.medengphy.2011.10.008
- Schileo, E., Taddei, F., Cristofolini, L. and Viceconti, M. (2008), "Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro", J. Biomech., 41(2), 356-367. https://doi.org/10.1016/j.jbiomech.2007.09.009
- Taylor, D. and Lee, T.C. (2003), "A crack growth model for the simulation of fatigue in bone", Int. J. Fatigue, 2, 387-395.
- Taddei, F., Cristofolini, L., Martelli, S., Gill, H. and Viceconti, M. (2006), "Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy", J. Biomech., 39, 2457-2467. https://doi.org/10.1016/j.jbiomech.2005.07.018
- Tellache, M., Pithioux, M., Chabrand, P. and Hochard, C. (2009), "Femoral neck fracture prediction by anisotropic yield criteria", Eur. J. Comput. Mech., 1, 33-41.
- Ural, A. and Vashishth, D. (2007), "Anisotropy of age-related toughness loss in human cortical bone: A finite element study", J. Biomech., 40, 1606-1614. https://doi.org/10.1016/j.jbiomech.2006.07.023
- Vashishth, D., Tanner, E. and Bonfield, W. (2003), "Experimental validation of a microcracking-based toughening mechanism for cortical bone", J. Biomech., 36(1), 121-124. https://doi.org/10.1016/S0021-9290(02)00319-6
- Vashishth, D., Behiri, J.C. and Bonfield, W. (1997), "Crack growth resistance in cortical bone: Concept of microcrack toughening", J. Biomech., 30(8), 763-769. https://doi.org/10.1016/S0021-9290(97)00029-8
- Verhulp, E., van Rietbergen, B. and Huiskes, R. (2006), "Comparison of micro-level and continuum level voxel models of the proximal femur", J. Biomech. 39, 2951-2957. https://doi.org/10.1016/j.jbiomech.2005.10.027
- Wang, X., Zauel, R. and Fyhrie, D.P. (2008a), "Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: A study using a 2D nonlinear finite element method", J. Biomech., 41, 2654- 2658. https://doi.org/10.1016/j.jbiomech.2008.06.011
- Wang, X., Zauel, R., Sudhaker Rao, D. and Fyhrie, D.P. (2008b), "Cancellous bone lamellae strongly affect microcrack propagation and apparent mechanical properties: Separation of patients with osteoporotic fracture from normal controls using a 2D nonlinear finite element method (biomechanical)", Bone, 42(6), 1184-1192. https://doi.org/10.1016/j.bone.2008.01.022
- Wolfram, U., Wilke, H.J. and Zysset, P.K. (2011), "Damage accumulation in vertebral trabecular bone depends on loading mode and direction", J. Biomech., 44(6),1164-1169. https://doi.org/10.1016/j.jbiomech.2011.01.018
- Yang, D., Cox, N., Nalla, K. and Ritchie, O. (2006), "Re-evaluating the toughness of human cortical bone", Bone, 38, 878-887. https://doi.org/10.1016/j.bone.2005.10.014
- Yang, H., Shen, L., Demetropoulos, K., King, I., Kolodziej, P., Levine, S. and Fitzgerald, J. (1996), "The relationship between loading conditions and fracture patterns of the proximal femur", J. Biomech. Eng., 118, 575-578. https://doi.org/10.1115/1.2796045
- Yosibash, Z., Tal, D. and Trabelsi, N. (2010), "Inhomogeneous orthotropic material properties high-order finite-element analysis with inhomogeneous orthotropic material properties", Phil. Trans. R. Soc. A, 368, 2707-2723. https://doi.org/10.1098/rsta.2010.0074
- Zioupos, P., Tong Wang, X. and Currey, J.D. (1996), "Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler", J. Biomech., 29(8), 989-1002. https://doi.org/10.1016/0021-9290(96)00001-2
Cited by
- Numerical analysis of crack propagation in cement PMMA: application of SED approach vol.55, pp.1, 2015, https://doi.org/10.12989/sem.2015.55.1.093
- Exploring 3D-structure analysis tools for a simulated bone remodelling process vol.4, pp.3-4, 2016, https://doi.org/10.1080/21681163.2014.999289
- Assessment of compressive failure process of cortical bone materials using damage-based model vol.66, 2017, https://doi.org/10.1016/j.jmbbm.2016.10.014
- Image-based finite-element modeling of the human femur vol.23, pp.14, 2014, https://doi.org/10.1080/10255842.2020.1789863
- Prediction of proximal femur fracture risk from DXA images based on novel fracture indexes vol.9, pp.2, 2014, https://doi.org/10.1080/21681163.2020.1833367