DOI QR코드

DOI QR Code

Biologically inspired modular neural control for a leg-wheel hybrid robot

  • Manoonpong, Poramate (Bernstein Center for Computational Neuroscience (BCCN), the Third Institute of Physics, Georg-August-Universitat Gottingen) ;
  • Worgotter, Florentin (Bernstein Center for Computational Neuroscience (BCCN), the Third Institute of Physics, Georg-August-Universitat Gottingen) ;
  • Laksanacharoen, Pudit (Mechanical and Aerospace Engineering Department, Faculty of Engineering, King Mongkut's University of Technology North Bangkok)
  • Received : 2013.02.22
  • Accepted : 2012.07.27
  • Published : 2014.01.25

Abstract

In this article we present modular neural control for a leg-wheel hybrid robot consisting of three legs with omnidirectional wheels. This neural control has four main modules having their functional origin in biological neural systems. A minimal recurrent control (MRC) module is for sensory signal processing and state memorization. Its outputs drive two front wheels while the rear wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. Stepping directions are achieved by a phase switching network (PSN) module. The combination of these modules generates various locomotion patterns and a reactive obstacle avoidance behavior. The behavior is driven by sensor inputs, to which additional neural preprocessing networks are applied. The complete neural circuitry is developed and tested using a physics simulation environment. This study verifies that the neural modules can serve a general purpose regardless of the robot's specific embodiment. We also believe that our neural modules can be important components for locomotion generation in other complex robotic systems or they can serve as useful modules for other module-based neural control applications.

Keywords

References

  1. Akay, T., Ludwar, B., Goritz, M., Schmitz, J. and Buschges, A. (2007), "Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system", J. Neurosci., 27, 3285-3294. https://doi.org/10.1523/JNEUROSCI.5202-06.2007
  2. Allen, T., Quinn, R., Bachmann, R. and Ritzmann, R. (2003), "Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles", Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 2, pages 1370-1375, Las Vegas, Nevada, USA, October.
  3. Armour, R. and Vincent, J. (2006), "Rolling in nature and robotics: a review", J. Bionic Eng., 3(4),195-208. https://doi.org/10.1016/S1672-6529(07)60003-1
  4. Bassler, U. and Buschges, A. (1998), "Pattern generation for stick insect walking movements-Multisensory control of a locomotor program", Brain Res. Rev., 27, 65-88. https://doi.org/10.1016/S0165-0173(98)00006-X
  5. Besseron, G., Grand, C., Ben Amar, F., Plumet, F. and Bidaud, P. (2005), "Locomotion modes of an hybrid wheel-legged robot", Proceedings of the 7th International Conference on Climbing and Walking Robots, pages 825-833, London, UK, September.
  6. Braitenberg, V. (1984), Vehicles: Experiments in Synthetic Psychology, Cambridge, MA: MIT Press.
  7. Buschges, A. (2005), "Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion", J. Neurophysiol., 93, 1127-1135. https://doi.org/10.1152/jn.00615.2004
  8. Chadil, N., Phadoognsidhi, M., Suwannasit, K., Manoonpong, P. and Laksanacharoen, P. (2011), "A reconfigurable spherical robot", Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), pages 2380-2385, Shanghai, China, May.
  9. Daun, S., Rubin, J. and Rybak, I. (2009), "Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis", J. Comput. Neurosci., 27(1), 3-36. https://doi.org/10.1007/s10827-008-0124-4
  10. Delcomyn, F. (1999), "Walking robots and the central and peripheral control of locomotion in insects", Auton. Robot., 7, 259-270. https://doi.org/10.1023/A:1008928605612
  11. Eich, M., Grimminger, F., Bosse, S., Spenneberg, D. and Kirchner, F. (2008), "ASGUARD: a hybrid legged wheel security and SAR-robot using bio-inspired locomotion for rough terrain", Proceedings of the IARP/EURON Workshop on Robotics for Risky Interventions and Enviromental Surveillance, Benicassim, Spain, January.
  12. Gabriel, J. and Buschges, A. (2007), "Control of stepping velocity in a single insect leg during walking", Philos. T. Roy. Soc. A, 365, 251-271. https://doi.org/10.1098/rsta.2006.1912
  13. Grillner, S. (2006), "Biological pattern generation: the cellular and computational logic of networks in motion", Neuron, 52(5), 751-766. https://doi.org/10.1016/j.neuron.2006.11.008
  14. Halme, A., Leppaenen, I., Montonen, M. and Yloenen, S. (2001), "Robot motion by simultaneously wheel and leg propulsion", Proceedings of the 4th International Conference on Climbing and Walking Robots. Karlsruhe, Germany, September.
  15. Harth, E., Csermely, T., Beek, B. and Lindsay, R. (1970), "Brain functions and neural dynamics", J. Theor. Biol., 26, 93-120. https://doi.org/10.1016/S0022-5193(70)80035-2
  16. Hornby, G., Takamura, S., Yamamoto, T. and Fujita, M. (2005), "Autonomous evolution of dynamic gaits with two quadruped robots", IEEE T. Robotic. Autom., 21, 402-410. https://doi.org/10.1109/TRO.2004.839222
  17. Hulse, M. and Pasemann, F. (2002), "Dynamical neural schmitt trigger for robot control", Proceedings of the International Conference on Artificial Neural Networks, volume 2415, pages 783-788, Madrid, Spain, August.
  18. Hulse, M., Wischmann, S. and Pasemann, F. (2004), "Structure and function of evolved neuro-controllers for autonomous robots", Connect. Sci., 16(4), 249-266. https://doi.org/10.1080/09540090412331314795
  19. Ijspeert, A.J. (2008), "Central pattern generators for locomotion control in animals and robots: a review", Neural Networks, 21(4), 642-653. https://doi.org/10.1016/j.neunet.2008.03.014
  20. Kim, Y., Ahn, S. and Lee, Y. (2010), "Kisbot: new spherical robot with arms", Proceedings of the 10th WSEAS International Conference on Robotics, Control and Manufacturing Technology, pages 63-67, Hangzhou, China, April.
  21. Klavins, E., Komsuoglu, H., Full, R.J. and Koditschek, D.E. (2000), Neurotechnology for Biomimetic Robots, chapter The Role of Reflexes Versus Central Pattern Generators in Dynamical Legged Locomotion, MIT Press, Boston.
  22. Krause, A., Durr, V., Blassing, B. and Schack, T. (2010), "Evolutionary optimization of echo state networks: multiple motor pattern learning", Proceedings of the 6th International Workshop on Artificial Neural Networks and Intelligent Information Processing, volume 2, pages 63-71, Punchal, Madeira, Portugal, June.
  23. Laksanacharoen, S. and Jearanaisilawong, P. (2009), "Design of a three-legged reconfigurable spherical shape robot", Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pages 1730-1733, Singapore, July.
  24. Mahmoud, A., Okada, T. and Shimizu, T. (2008), "Circular path estimation of a rotating four-legged robot using a hybrid genetic algorithm LSM", Proceedings of the JSME Conference on Robotics and Mechatronics, pages 2P1-C10, Fukuoka, Japan, May.
  25. Manoonpong, P. (2007), Neural Preprocessing and Control of Reactive Walking Machines: Towards Versatile Artificial Perception-Action Systems, Cognitive Technologies, Springer.
  26. Manoonpong, P., Kolodziejski, C., Worgotter, F. and J., M. (2013), "Combining correlation-based and reward-based learning in neural control for policy improvement", Advs. Complex Syst., DOI: 10.1142/S021952591350015X.
  27. Manoonpong, P., Pasemann, F. and Roth, H. (2007a), "Modular reactive neurocontrol for biologically-inspired walking machines", Int. J. Robot. Res., 26(3), 301-331. https://doi.org/10.1177/0278364906076263
  28. Manoonpong, P., Pasemann, F. and Worgotter, F. (2007b), "Reactive neural control for phototaxis and obstacle avoidance behavior of walking machines", Int. J. Mech. Syst. Sci. Eng., 1(3), 172-177.
  29. Manoonpong, P., Pasemann, F. and Worgotter, F. (2008), "Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines", Robot. Auton. Syst., 56(3), 265-288. https://doi.org/10.1016/j.robot.2007.07.004
  30. Manoonpong, P. and Roth, H. (2008), "Reactive neural control for autonomous robots: From simple wheeled robots to complex walking machines", Proceedings of the Fifth International Conference on Neural Networks and Artificial Intelligence (ICNNAI '2008), Minsk, Belarus, May.
  31. Marder, E. and Bucher, D. (2001), "Central pattern generators and the control of rhythmic movements", Curr. Biol., 11(23), R986-R996. https://doi.org/10.1016/S0960-9822(01)00581-4
  32. Matsuoka, K. (1985), "Sustained oscillations generated by mutually inhibiting neurons with adaptation", Biol. Cybern., 52(6), 367-376. https://doi.org/10.1007/BF00449593
  33. Nakajima, S. and Nakano, E. (2008), "Adaptive gait for a leg-wheel robot traversing rough terrain (second report: Step-up gait)", J. Robot. Mechatronics, 20(6), 912-919. https://doi.org/10.20965/jrm.2008.p0912
  34. Parker, G. and Lee, Z. (2003), "Evolving neural networks for hexapod leg controllers", Proceedings of the 2003 IEEE/RSJInternational Conference on Intelligent Robots and Systems, volume 2, pages 1376-1381, Las Vegas, Nevada, USA, October.
  35. Pasemann, F., Hild, M. and Zahedi, K. (2003a), "SO(2)-networks as neural oscillators", Computational Methods in Neural Modeling: Proceedings of the 7th International Work-Conference on Artificial and Natural Networks, volume 2686, pages 144-151, Mao, Menorca, Spain, June.
  36. Pasemann, F., Hulse, M. and Zahedi, K. (2003b), "Evolved neurodynamics for robot control", Proceedings of European Symposium on Artificial Neural Networks 2003, pages 439-444, Bruges, Belgium, April.
  37. Pearson, K. and Iles, J. (1973), "Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach", J. Exp. Biol., 58, 725-744.
  38. Rumelhart, D., Hinton, G. and Williams, R. (1980), "Learning internal representations by error propagation", Parallel Distributed Processing: Explorations in the Microstructure of Cognition, volume 1, 318-362.
  39. Salmen, M. and Ploeger, P. (2005), "Echo state networks used for motor control", Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pages 1953-1958, Barcelona, Spain, April.
  40. Shu, G., Zhan, Q. and Cai, Y. (2009), "Motion control of spherical robot based on conservation of angular momentum", Proceedings of International Conference on Mechatronics and Automation, 599-604, Changchun, Jilin, China, August.
  41. Steingrube, S., Timme, M., Worgotter, F. and Manoonpong, P. (2010), "Self-organized adaptation of a simple neural circuit enables complex robot behaviour", Nature Phys., 6, 224-230. https://doi.org/10.1038/nphys1508
  42. Tanaka, T. and Hirose, S. (2008), "Development of leg-wheel hybrid quadruped "AirHopper": lightweight leg-wheel design", J. Robot. Mechatronics, 20(4), 526-532. https://doi.org/10.20965/jrm.2008.p0526
  43. Terman, D. and Wang, D.L. (1995), "Global competition and local cooperation in a network of neural oscillators", Physica D, 81, 148-176. https://doi.org/10.1016/0167-2789(94)00205-5
  44. Valsalam, V. and Miikkulainen, R. (2008), "Modular neuroevolution for multilegged locomotion", Proceedings of the Genetic and Evolutionary Computation Conference, 265-272, Atlanta, Georgia, USA, July.
  45. Valsalam, V. and Miikkulainen, R. (2009), "Evolving symmetric and modular neural networks for distributed control", Proceedings of the Genetic and Evolutionary Computation Conference, pages 731-738, Montreal, Canada, July.
  46. von Twickel, A., Buschges, A. and Pasemann, F. (2011), "Deriving neural network controllers from neuro-biological data-Implementation of a single-leg stick insect controller", Biol. Cybern., 104, 95-119. https://doi.org/10.1007/s00422-011-0422-1
  47. von Twickel, A., Hild, M., Siedel, T., Patel, V. and Pasemann, F. (2012), "Neural control of a modular multi-legged walking machine: Simulation and hardware", Robot. Auton. Syst., 60(2), 227-241. https://doi.org/10.1016/j.robot.2011.10.006
  48. Wilson, H. and Cowan, J. (1972), "Excitatory and inhibitory interactions in localized populations of model neurons", Biophys. J., 12, 1-24.
  49. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Cristobal-Zagal, J. and Lipson, H. (2011), "Evolving robot gaits in hardware: The hyperneat generative encoding vs. parameter optimization", Proceedings of the 20th European Conference on Artificial Life, 890-897, Paris, France, August.
  50. Zahedi, K., von Twickel, A. and Pasemann, F. (2008), "Yars: a physical 3D simulator for evolving controllers for real robots", Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2008), volume 5325 of LNAI, pages 75-86, Venice, Italy, November.