References
- Balch, T. and Arkin, R.C. (1998), "Behavior-based formation control for multi-robot teams", IEEE Trans. Robot. Autom., 14(6), 926-939. https://doi.org/10.1109/70.736776
- van den Broek, T.H.A., van de Wouw, N. and Nijmeijer, H. (2009), "Formation control of unicycle mobile robots: a virtual structure approach", Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, China, December 16-18.
- Chen, C. (1999), Linear System Theory and Design, (3rd Edition), Oxford University Press.
- Chen, J., Sun, D., Yang, J. and Chen, H. (2010), "Leader-follower formation control of multiple nonholonomic mobile robots incorporating a receding-horizon scheme", Int. J. Robot. Res., 29(6), 727-747. https://doi.org/10.1177/0278364909104290
- Consolini, L., Morbidi, F., Prattichizzo, D. and Tosques, M. (2008), "Leader-follower formation control of nonholonomic mobile robots with input constraints", Automatica, 44(5), 1343-1349. https://doi.org/10.1016/j.automatica.2007.09.019
- Desai, J.P., Ostrowski, J.P. and Kumar, V. (2001), "Modeling and control of formations of nonholonomic mobile robots", IEEE Trans. Robot. Autom., 17(6), 905-908. https://doi.org/10.1109/70.976023
- Dierks, T., Brenner, B. and Jagannathan, S. (2013), "Neural network-based optimal control of mobile robot formations with reduced information exchange", IEEE Trans. Control Syst. Technol., 21(4), 1407-1415. https://doi.org/10.1109/TCST.2012.2200484
- Do, K.D. and Pan, J. (2007), "Nonlinear formation control of unicycle-type mobile robots", Robot. Auton. Syst., 55(3), 191-204. https://doi.org/10.1016/j.robot.2006.09.001
- Dong, W. and Farrell, J.A. (2008), "Cooperative control of multiple nonholonomic mobile agents", IEEE Trans. Autom. Control, 53(6), 1434-1448. https://doi.org/10.1109/TAC.2008.925852
- Dunbar, W.B. and Murray, R.M. (2006), "Distributed receding horizon control for multi-vehicle formation stabilization", Automatica, 42(4), 549-558. https://doi.org/10.1016/j.automatica.2005.12.008
- Egerstedt, M. and Hu, X. (2001), "Formation constrained multi-agent control", IEEE Trans. Robot. Autom., 17(6), 947-951. https://doi.org/10.1109/70.976029
- Engwerda, J.C. (2005), LQ Dynamic Optimization and Differential Games, Wiley.
- Fontes, F.A.C.C. (2001), "A general framework to design stabilizing nonlinear model predictive controllers", Syst. Control Lett., 42(2), 127-143. https://doi.org/10.1016/S0167-6911(00)00084-0
- Gross, J.L. and Yellen, J. (2004), Handbook of Graph Theory, CRC Press.
- Gu, D. and Hu, H. (2005), "A stabilizing receding horizon regulator for nonholonomic mobile robots", IEEE Trans. Robot., 21(5), 1022-1028. https://doi.org/10.1109/TRO.2005.851357
- Gu, D. (2008), "A differential game approach to formation control", IEEE Trans. Control Syst. Technol., 16(1), 85-93. https://doi.org/10.1109/TCST.2007.899732
- Jank, G. and Abou-Kandil, H. (2003), "Existence and uniqueness of open-loop Nash equilibria in linearquadratic discrete time games", IEEE Trans. Autom. Control, 48(2), 267-271. https://doi.org/10.1109/TAC.2002.808477
- Lewis, M.A. and Tan, K. (1997), "High precision formation control of mobile robots using virtual structures", Auton. Robot., 4(4), 387-403. https://doi.org/10.1023/A:1008814708459
- Meenakshi, A.R. and Rajian, C. (1999), "On a product of positive semidefinite matrices", Linear Alg. Appl., 295(1-3), 3-6. https://doi.org/10.1016/S0024-3795(99)00014-2
- Moshtagh, N., Michael, N., Jadbabaie, A. and Daniilidis, K. (2009), "Vision-based, distributed control laws for motion coordination of nonholonomic robots", IEEE Trans. Robot., 25(4), 851-860. https://doi.org/10.1109/TRO.2009.2022439
- Ou, M., Du, H. and Li, S. (2012), "Finite-time formation control of multiple nonholonomic mobile robots", Int. J. Robust Nonlinear Control, doi: 10.1002/rnc.2880.
- Sun, D., Wang, C., Shang, W. and Feng, G. (2009), "A synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations", IEEE Trans. Robot., 25(5), 1074-1086. https://doi.org/10.1109/TRO.2009.2027384
- Tabuada, P., Pappas, G. J. and Lima, P. (2005), "Motion feasibility of multi-agent formations", IEEE Trans. Robot., 21(3), 387-392. https://doi.org/10.1109/TRO.2004.839224
- Tanner, H.G., Pappas, G.J. and Kumar, V. (2004), "Leader-to-formation stability", IEEE Trans. Robot. Autom., 20(3), 443-455. https://doi.org/10.1109/TRA.2004.825275
Cited by
- Particle swarm optimization-based receding horizon formation control of multi-agent surface vehicles vol.2, pp.2, 2014, https://doi.org/10.12989/arr.2018.2.2.161