DOI QR코드

DOI QR Code

Overview of flexure-based compliant microgrippers

  • Aia, Wenji (Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau) ;
  • Xu, Qingsong (Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau)
  • Received : 2012.12.31
  • Accepted : 2013.10.29
  • Published : 2014.01.25

Abstract

Microgripper is an essential device in the micro-operation system. It can convert other types of energy into mechanical energy and produce clamp movement with required chucking force, which enables it a broad application prospect in the domain of tiny components' processing and assembly, biomedicine and optics, etc. The performance of a microgripper is dependent on its power supply, type of drive, mechanism structure, sensing components, and controller. This paper presents a state-of-the-art survey of recent development on flexure-based microgrippers. According to the drive type, the existing microgrippers can be mainly classified as electrostatic microgripper, electrothermal microgripper, electromagnetic microgripper, piezoelectric microgripper, and shape memory alloy microgripper. Additionally, some different mechanisms, sensors, and control methods that are used in microgripper system are reviewed. The key issue of how to choose those components in microgripper system design is also addressed.

Keywords

References

  1. Albrecht, T., Despont, M., Eleftheriou, E., Bu, J.U. and Hirano, T. (2004), "MEMS in mass storage systems", Enabling Technologies for MEMS and Nanodevices, Germany, Wiley, Vol. 1, 193-236.
  2. Amjad, K., Bazaz, S.A. and Lai, Y. (2008), "Design of an electrostatic MEMS microgripper system integrated with force sensor", Proceedings of the IEEE International Conference on Microelectronics, 236-239.
  3. Anis, Y.H., Mills, J.K. and Cleghorn, W.L. (2006), "Active microgripper interface used in microassembly of MEMS", Proceedings of the Canadian Conference on Electrical and Computer Engineering, 352-354, Ottawa, May.
  4. Ali, N., Shakoor, R.I. and Hassan, M.M. (2011), "Design, modeling and simulation of electrothermally actuated microgripper with integrated capacitive contact sensor", Proceedings of the 14th IEEE International Conference on Multitopic, 201-206.
  5. Bassan, H.S., Patel, R.V. and Moallem, M. (2009), "A novel manipulator for percutaneous needle insertion: Design and experimentation", IEEE/ASME Transactions Mechatronics, 14(6), 746-761, Dec. https://doi.org/10.1109/TMECH.2009.2011357
  6. Bahadur, I.B., Mills, J. and Sun, Y. (2005), "Design of a MEMS-based resonant force sensor for compliant, passive microgripping", Proceedings of the IEEE International Conference on Mechatronics and Automation, 1, 77-82.
  7. Baillieul, J. and Weibel, S. (1998), "Scale dependence in the oscillatory control of micromechanisms", Proceedings of the 37th IEEE Conference on Decision and Control, 3, 3058-3063.
  8. Brinkerhoff, R. and Devasia, S. (2000), "Output tracking for actuator deficient/ redundant systems: multiple piezoactuator example", AIAA J. Guid. Control Dyn., 23(2), 370-373. https://doi.org/10.2514/2.4535
  9. Barrett, R.C. and Quate, C.F. (1991), "Optical scan-correction system applied to atomic force microscopy", Rev. Sci. Instrum., 62 (6), 1393-1399. https://doi.org/10.1063/1.1142506
  10. Boundaoud, M., Haddab, Y., Le Gorrec, Y. and Lutz, P. (2011), "Noise characterization in millimeter sized micromanipulation systems" , Mechatronics, 21, 1087-1097. https://doi.org/10.1016/j.mechatronics.2011.06.005
  11. Cappelleri, D.J., Piazza, G. and Kumar, V. (2011), "A two dimensional vision-based force sensor for microrobotic applications", Sensor. Actuat. A, 171(2), 340-351. https://doi.org/10.1016/j.sna.2011.06.014
  12. Chien, C.H., Wu, Y.D., Chiou, Y.T., Hsieh, C.C., Chen, Y.C., Chen, T.P., Tsai, M.L. and Wang, C.T. (2006), "Nanoscale deformation measurement by using the hybrid method of gray-level and holographic interferometry", Opt. Lasers Eng., 44(1), 80-91. https://doi.org/10.1016/j.optlaseng.2004.12.011
  13. Croft, D., Shedd, G. and Devasia, S. (2001), "Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application", Proceedings of the American Control Conference, 3, 2123-2128.
  14. Clayton, G.M., Tien, S., Leang, K.K., Zou, Q. and Devasia, S. (2009), "A review of feedforward control approaches in nanopositioning for high-speed SPM", J. Dyn. Syst. Measurement Control, 131(6), 061101-1-061101-19. https://doi.org/10.1115/1.4000158
  15. Cuttino, J.F., Miller, A.C. and Schinstock, D.E. (1999), "Performance optimization of a fast tool servo for single-point diamond turning machines", IEEE-ASME T. Mech., 4(2), 169-179. https://doi.org/10.1109/3516.769543
  16. Chang, T. and Sun, X. (2001), "Analysis and control of monolithic piezoelectric nano-actuator", IEEE T. Control Syst. Tech., 9(1), 69-75. https://doi.org/10.1109/87.896747
  17. Dechev, N., Cleghorn, W.L. and Mills, J.K. (2003), "Microassembly of 3-D MEMS structures utilizing a MEMS microgripper with a robotic manipulator", Proceedings of the IEEE International Conference on Robotics and Automation, 3, 3193-3199.
  18. Devasia, S., Eleftheriou, E. and Moheimani S.O.R. (2007), "A survey of control issues in nanopositioning", IEEE T. Control Syst.Tech., 15(5), 802-823. https://doi.org/10.1109/TCST.2007.903345
  19. Goldfarb, M. and Celanovic, N. (1997), "A lumped parameter electromechanical model for describing the nonlinear behaviour of piezoelectric actuators", J. Dyn. Syst. - T. ASME, 119(3), 478-485. https://doi.org/10.1115/1.2801282
  20. Hamedi, M., Salimi, P. and Vismeh, M. (2012), "Simulation and experimental investigation of a novel electrostatic microgripper system", Microelectron. Eng., 98, 467-471. https://doi.org/10.1016/j.mee.2012.07.096
  21. Hung, E.S. and Senturia, S.D. (1999), "Extending the travel range of analog- tuned electrostatic actuators", J. Micoroelectromech. Syst., 8(4), 497-505. https://doi.org/10.1109/84.809065
  22. Horenstein, M.N., Bifano, T.G., Mali, R.K. and Vmdelli, N. (1997), "Electrostatic effects in micromachined actuators for adaptive optics", J. Electrostat., 42(1), 69-81. https://doi.org/10.1016/S0304-3886(97)00138-1
  23. Jia, Y. and Xu, Q. (2013), "MEMS microgripper actuators and sensors: the state-of-the-art survey", Recent Patent. Mech. Eng., 6(2), 132-142. https://doi.org/10.2174/2212797611306020005
  24. Kyung, J.H., Ko, B.G., Ha, Y.H. and Chung, G.J. (2007), "Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges", Sensor. Actuat. A, 141(1), 144-150.
  25. Kim, K., Liu, X., Zhang, Y. and Sun, Y. (2008), "Micronewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback", Proceedings of the IEEE International Conference on Robotics and Automation, 3100-3105, May.
  26. Kure, F., Kanda, T., Suzumori, K. and Wakimoto, S. (2008), "Flexible displacement sensor using injected conductive paste", Sensor. Actuat. A, 143(2), 272-278. https://doi.org/10.1016/j.sna.2007.11.031
  27. Lu, Z., Chen, P.C.Y. and Lin, W. (2006), "Force sensing and control in micromanipulation", IEEE T. Syst. Man Cy. C, 36(6), 713-724. https://doi.org/10.1109/TSMCC.2006.879385
  28. Lu, Z., Chen, P.C.Y., Nam, J., Ge, R. and Lin, W. (2007), "A micromanipulation system with dynamic force-feedback for automatic batch microinjection", J. Micromech. Microeng., 17(2), 314-321. https://doi.org/10.1088/0960-1317/17/2/018
  29. Logan, D., Ahearme, E. and Byrne, G. (2009), "Piezoelectric drive systems in ultraprecision machines: a review of the state-of-the-art", Int. J. Comput. Mater. Sci. Surface Eng., 2 (1-2), 54-62.
  30. Leang, K. and Devasia, S. (2002), "Hysteresis, creep, and vibration compensation for piezoactuators: feedback and feedforward control", Proceedings of the Second IFAC Conference on Mechatronic Systems, Berkeley, CA, 283-289, Dec.
  31. Minase, J., Lu, T. F., Cazzolato, B. and Grainger, S. (2010), "A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators", Precis. Eng.,34(4), 692-700. https://doi.org/10.1016/j.precisioneng.2010.03.006
  32. Nonaka, K., Sakai, K. and Baillieul, J. (2004), "Open loop oscillatory control for electromagnetic actuated microgrippers", Proceedings of SICE Annual Conference, 3, 2285-2290.
  33. Nonaka, K. and Baillieul, J. (2001), "Open loop robust vibrational stabilization of a two wire system inside the snap-through instability region", Proceedings of the 40th IEEE Conference on Decision and Control, 2, 1334-1341.
  34. Ouyang, P.R., Tjiptoprodjo, R.C., Zhang, W.J. and Yang, G.S. (2008), "Micro-motion devices technology: the state of arts review", Int. J. Adv. Manuf. Tech., 38(5-6), 463-478. https://doi.org/10.1007/s00170-007-1109-6
  35. Okazaki, Y. (1990), "A micro-positioning tool post using a piezoelectric actuator for diamond turning machines", Precis. Eng., 12 (3), 151-156. https://doi.org/10.1016/0141-6359(90)90087-F
  36. Pedrak, R., Ivanov, T., Ivanova, K., Gotszalk, T., Abedinov, N., Rangelowa, I.W., Edinger, K., Tomerov, E., Schenkel, T. and Hudek, P. (2003), "Micromachined atomic force microscopy sensor with integrated piezoresistive, sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes", J. Vac. Sci. Technol. B, 21(6), 3102-3107. https://doi.org/10.1116/1.1614252
  37. Sugimoto, T., Nonaka, K. and Horenstein, M.N. (2005), "Bidirectional electrostatic actuator operated with charge control", J. Microelecromech. S., 14(4), 718-724. https://doi.org/10.1109/JMEMS.2005.845410
  38. Seeger, J.I. and Boser, B.E. (2003), "Charge control of parallel-plate, electrostatic actuators and the tip-in instability", J. Microelecromech. S., 12(5), 656-671. https://doi.org/10.1109/JMEMS.2003.818455
  39. Schneir, J., McWaid, T.H., Alexander, J. and Wilfley, B.P. (1994), "Design of an atomic-force microscope with interferometric position control", J. Vac. Sci. Technol. B, 12(6), 3561-3566. https://doi.org/10.1116/1.587471
  40. Shen, Y., Winder, E., Ning, X., Pomeroy, C.A. and Wejinya, U.C. (2006), "Close-loop optimal controlenabled piezoelectric microforce sensors", IEEE-ASME T. Mech., 11 (4), 420-427. https://doi.org/10.1109/TMECH.2006.878555
  41. Song, G., Zhao, J., Zhou, X. and Abreu-Garcia, J.A.D. (2005), "Tracking control of a piezoceramic actuator with hysteresis compensating using inverse preisach model", IEEE-ASME T. Mech., 10(2), 198-209. https://doi.org/10.1109/TMECH.2005.844708
  42. Tang, W.C., Nguyen, T.H., Judy, M.W. and Howe, R.T. (1990), "Electrostatic-comb drive of lateral polysilicon resonators", Sensor. Actuat. A, 21(1-3), 328-331. https://doi.org/10.1016/0924-4247(90)85065-C
  43. Varona, J., Saenz, E., Fiscal-Woodhouse, S. and Hamoui, A.A. (2009), "Design and fabrication of a novel microgripper based on electrostatic actuation", Proceedings of the IEEE International Midwest Symposium on Circuits and Systems, 827-832.
  44. Wang, L., Mills, J.K. and Cleghorn, W.L. (2008), "Development of an electron tunneling force sensor for the use in microassembly", Proceedings of the IEEE International Conference on Microsystems and Nanoelectronics Research, 205-208.
  45. Wang, D.H., Yang, Q. and Dong, H.M. (2011), "A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing", IEEE-ASME T. Mech., 18(1), 138-147.
  46. Xu, Q. (2012), "Mechanism design and analysis of a novel 2-dof compliant modular Microgripper", Proceedings of 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 1966-1971.
  47. Xu, Q. (2013a), "Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper", IEEE T. Robot., 29(3), 663-673. https://doi.org/10.1109/TRO.2013.2239554
  48. Xu, Q. (2013b), "Precision position/force interaction control of a piezoelectric multimorph microgripper for microassembly", IEEE T. Autom. Sci. Eng., 10(3), 503-514. https://doi.org/10.1109/TASE.2013.2239288
  49. Xu, Q. (2013c), "Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse", IEEE T. Ind. Electron., 60(9), 3927-3937. https://doi.org/10.1109/TIE.2012.2206339
  50. Zhou, H., Tan, K.K. and Lee, T.H. (2000), "Micro-positioning of linear piezoelectric motors based on a learning nonlinear PID controller", Proceedings of the 39th IEEE Conference on Decision and control, 1, 913-918.
  51. Zubir, M.N.M., Shirinzadeh, B. and Tian, Y. (2009), "A new design of piezoelectric driven compliant-based microgripper for micromanipulation", Mech. Mach. Theory, 44(12), 2248-2264. https://doi.org/10.1016/j.mechmachtheory.2009.07.006

Cited by

  1. A practical operator support scheme and its application to safety-ensured object break using dual-arm machinery vol.28, pp.23, 2014, https://doi.org/10.1080/01691864.2014.959053
  2. Development and precision position/force control of a new flexure-based microgripper vol.26, pp.1, 2016, https://doi.org/10.1088/0960-1317/26/1/015005
  3. Development and Hybrid Position/Force Control of a Dual-Drive Macro-Fiber-Composite Microgripper vol.18, pp.4, 2018, https://doi.org/10.3390/s18041301
  4. Review of Electrothermal Actuators and Applications vol.8, pp.4, 2014, https://doi.org/10.3390/act8040069
  5. Untethered Soft Robotics with Fully Integrated Wireless Sensing and Actuating Systems for Somatosensory and Respiratory Functions vol.7, pp.5, 2014, https://doi.org/10.1089/soro.2019.0066