DOI QR코드

DOI QR Code

De Novo Design and Their Antimicrobial Activity of Stapled Amphipathic Helices of Heptapeptides

  • Dinh, Thuy T.T. (College of Pharmacy, Dongguk University) ;
  • Kim, Do-Hee (College of Pharmacy, Seoul National University) ;
  • Lee, Bong-Jin (College of Pharmacy, Seoul National University) ;
  • Kim, Young-Woo (College of Pharmacy, Dongguk University)
  • Received : 2014.08.28
  • Accepted : 2014.09.19
  • Published : 2014.12.20

Abstract

In this study we designed and synthesized several heptapeptides that are enforced to form an amphipathic helix using all-hydrocarbon stapling system and evaluated their antimicrobial and hemolytic activities. The antimicrobial activity showed clear structure-activity relationships, confirming the importance of helicity and amphipathicity. Some stapled heptapeptides displayed a moderate antimicrobial activity along with a low hemolytic activity. To our best knowledge, although not highly potent, these stapled peptides represent the shortest helical amphipathic antimicrobial peptides reported to date. The preliminary data obtained in this work would serve as a good starting point for further developing short analogs of amphipathic helical antimicrobial peptides.

Keywords

References

  1. Gabay, J. E. Science 1994, 264, 373-374. https://doi.org/10.1126/science.8153623
  2. Boman, H. G. Annu. Rev. Immunol. 1995, 13, 61-92. https://doi.org/10.1146/annurev.iy.13.040195.000425
  3. Yeaman, M. R.; Yount, N. Y. Pharmacol. Rev. 2003, 55, 27-55. https://doi.org/10.1124/pr.55.1.2
  4. Zasloff, M. Nature 2002, 415, 389-395. https://doi.org/10.1038/415389a
  5. Tossi, A.; Sandri, L.; Giangaspero, A. Biopolymers 2000, 55, 4-30. https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
  6. Giangaspero, A.; Sandri, L.; Tossi, A. Eur. J. Biochem. 2001, 268, 5589-600. https://doi.org/10.1046/j.1432-1033.2001.02494.x
  7. Jenssen, H.; Hamill, P.; Hancock, R. E. W. Clin. Microbiol. Rev. 2006, 19, 491-511. https://doi.org/10.1128/CMR.00056-05
  8. Jiang, Z.; Vasil, A. I.; Hale, J. D.; Hancock, R. E. W.; Vasil, M. L.; Hodges, R. S. Pept. Sci. 2008, 90, 369-383. https://doi.org/10.1002/bip.20911
  9. Shai, Y. Biopolymers 2002, 66, 236-248. https://doi.org/10.1002/bip.10260
  10. Huang, Y.; Huang, J.; Chen, Y. Protein Cell 2010, 1, 143-152. https://doi.org/10.1007/s13238-010-0004-3
  11. Marr, A. K.; Gooderham, W. J.; Hancock, R. E. W. Curr. Opin. Pharmacol. 2006, 6, 468-472. https://doi.org/10.1016/j.coph.2006.04.006
  12. Shai, Y. Biochim. Biophys. Acta 1999, 1462, 55-70. https://doi.org/10.1016/S0005-2736(99)00200-X
  13. Pham, T. K.; Kim, D.-H.; Lee, B.-J.; Kim, Y.-W. Bioorg. Med. Chem. Lett. 2013, 23, 6717-6720. https://doi.org/10.1016/j.bmcl.2013.10.031
  14. Park, J. M.; Jung, J.-E.; Lee, B. J. Biochem. Biophys. Res. Commun. 1994, 205, 948-954. https://doi.org/10.1006/bbrc.1994.2757
  15. Won, H.-S.; Park, S.-H.; Kim, H. E.; Hyun, B.; Kim, M.; Lee, B. J.; Lee, B.-J. Eur. J. Biochem. 2002, 269, 4367-4374. https://doi.org/10.1046/j.1432-1033.2002.03139.x
  16. Creighton, T. E. Proteins: Structures and Molecular Properties, Freeman and Co.: New York, 1984.
  17. Schafmeister, C. E.; Po, J.; Verdine, G. L. J. Am. Chem. Soc. 2000, 122, 5891-5892. https://doi.org/10.1021/ja000563a
  18. Kim, Y.-W.; Grossmann, T. N.; Verdine, G. L. Nat. Proc. 2011, 6, 761-771. https://doi.org/10.1038/nprot.2011.324
  19. Kim, Y.-W.; Verdine, G. L. Bioorg. Med. Chem. Lett. 2009, 19, 2533-2536. https://doi.org/10.1016/j.bmcl.2009.03.022
  20. Kim, Y.-W.; Kutchukian, P. S.; Verdine, G. L. Org. Lett. 2010, 12, 3046-3049. https://doi.org/10.1021/ol1010449
  21. Verdine, G. L.; Hilinski, G. J. Methods Enzymol. 2012, 503, 3-33. https://doi.org/10.1016/B978-0-12-396962-0.00001-X
  22. Chapuis, H.; Slaninova, J.; Bednarova, L.; Monincova, L.; Budesinsky, M.; Cerovsky, V. Amino Acids 2012, 43, 2047-2058. https://doi.org/10.1007/s00726-012-1283-1
  23. Won, H.-S.; Kang, S.-J.; Choi, W. S.; Lee, B. J. Mol. Cells 2011, 31, 49-54. https://doi.org/10.1007/s10059-011-0005-y

Cited by

  1. -Capping Effects of Stapled Heptapeptides on Antimicrobial and Hemolytic Activities vol.36, pp.10, 2015, https://doi.org/10.1002/bkcs.10483
  2. Antimicrobial and Hemolytic Activity of Stapled Heptapeptide Dimers vol.37, pp.8, 2016, https://doi.org/10.1002/bkcs.10839
  3. Antimicrobial activity and stability of stapled helices of polybia-MP1 vol.40, pp.12, 2017, https://doi.org/10.1007/s12272-017-0963-5
  4. Hydrocarbon Stapled Antimicrobial Peptides vol.37, pp.1, 2018, https://doi.org/10.1007/s10930-018-9755-0
  5. Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides pp.1976-3786, 2018, https://doi.org/10.1007/s12272-018-1084-5
  6. All-Hydrocarbon Staples and Their Effect over Peptide Conformation under Different Force Fields vol.58, pp.9, 2014, https://doi.org/10.1021/acs.jcim.8b00404
  7. De Novo Hydrocarbon-Stapling Design of Single-Turn α-Helical Antimicrobial Peptides vol.26, pp.4, 2020, https://doi.org/10.1007/s10989-019-09964-7
  8. Stapled Anoplin as an Antibacterial Agent vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.772038
  9. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions vol.50, pp.13, 2014, https://doi.org/10.1039/d0cs00729c
  10. Rational design of hyperstable antibacterial peptides for food preservation vol.5, pp.1, 2014, https://doi.org/10.1038/s41538-021-00109-z