DOI QR코드

DOI QR Code

Effective α-Helix Stabilization via Hexenyl Propionate Cross-Link

  • Received : 2014.09.12
  • Accepted : 2014.09.30
  • Published : 2014.12.20

Abstract

In this study we examined two ester-containing cross-links, hex-2-enyl acetate and hex-2-enyl propionate, as new cross-linking systems for helix stabilization of short peptides. We demonstrated that these hexenyl ester cross-links can be readily installed via a ruthenium-mediated ring-closing metathesis reaction of L-aspartic acid 4-allyl ester or L-glutamic acid 5-allyl ester at position i and (S)-2-(4'-pentenyl)alanine at position i+4 using second generation Hoveyda-Grubbs catalyst at $60^{\circ}C$. Between these two cross-links, we found that the hex-2-enyl propionate significantly stabilizes the ${\alpha}$-helical conformations of short model peptides. The helix-stabilizing effects of the hex-2-enyl propionate tether appear to be as powerful as Verdine's i,i+4 all-hydrocarbon stapling system, which is one of the most widely used and the most potent helix-stabilizing cross-linking systems. Furthermore, the hex-2-enyl propionate bridge is reasonably robust against non-enzymatic hydrolytic cleavage at a physiological pH. While extended studies for probing its chemical scopes and biological applications are needed, we believe that this new helix-stabilizing system could serve as a useful chemical tool for understanding protein folding and designing conformationally-constrained peptide drugs.

Keywords

References

  1. Creighton, T. E. Proteins: Structures and Molecular Properties, Freeman and Co.: New York, 1984.
  2. Fairlie, D. P.; West, M. L.; Wong, A. K. Curr. Med. Chem. 1998, 5, 29-62.
  3. Marqusee, S.; Baldwin, R. L. Proc. Natl. Acad. Sci. USA 1987, 84, 8898-8902. https://doi.org/10.1073/pnas.84.24.8898
  4. Osapay, G.; Taylor, J. W. J. Am. Chem. Soc. 1990, 112, 6046-6051. https://doi.org/10.1021/ja00172a021
  5. Ghadiri, M. R.; Choi, C. J. Am. Chem. Soc., 1990, 112, 1630-1632. https://doi.org/10.1021/ja00160a054
  6. Jackson, D. Y.; King, D. S.; Chmielewski, J.; Singh, S.; Schultz, P. G. J. Am. Chem. Soc. 1991, 113, 9391-9392. https://doi.org/10.1021/ja00024a067
  7. Kemp, D. S.; Allen, T. J.; Oslick, S. L. J. Am. Chem. Soc. 1995, 117, 6641-6657. https://doi.org/10.1021/ja00130a001
  8. Cabezas, E.; Satterthwait, A. C. J. Am. Chem. Soc. 1999, 121, 3862-3875. https://doi.org/10.1021/ja983212t
  9. Kumita, J. R.; Smart, O. S.; Woolley, G. A. Proc. Natl. Acad. Sci. 2000, 97, 3803-3808. https://doi.org/10.1073/pnas.97.8.3803
  10. Blackwell, H. E.; Sadowsky, D. J.; Howard, R. J.; Sampson, J. N.; Chao, J. A.; Steinmetz, W. E.; O'Leary, D. J.; Grubbs, R. H. J. Org. Chem. 2001, 66, 5291-5302. https://doi.org/10.1021/jo015533k
  11. Chapman, R. N.; Dimartino, G.; Arora, P. S. J. Am. Chem. Soc. 2004, 126, 12252-12253. https://doi.org/10.1021/ja0466659
  12. Cantel, S. et al. J. Org. Chem. 2008, 73, 5663-5674. https://doi.org/10.1021/jo800142s
  13. Schafmeister, C. E.; Po, J.; Verdine, G. L. J. Am. Chem. Soc. 2000, 122, 5891-5892. https://doi.org/10.1021/ja000563a
  14. Kim, Y.-W.; Kutchukian, P. S.; Verdine, G. L. Org. Lett. 2010, 12, 3046-3049. https://doi.org/10.1021/ol1010449
  15. Verdine, G. L.; Walenski, L. D. Clin. Cancer Res. 2007, 13, 7264-7270. https://doi.org/10.1158/1078-0432.CCR-07-2184
  16. Verdine, G. L.; Hilinski, G. J. Methods Enzymol. 2012, 503, 3-33. https://doi.org/10.1016/B978-0-12-396962-0.00001-X
  17. Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C. Biopolymers 2001, 60, 396-419. https://doi.org/10.1002/1097-0282(2001)60:6<396::AID-BIP10184>3.0.CO;2-7
  18. Urnes, P.; Doty, P. Adv. Protein Chem. 1961, 16, 401-544.
  19. Kim, Y.-W.; Grossmann, T. N.; Verdine, G. L. Nat. Proc. 2011, 6, 761-771. https://doi.org/10.1038/nprot.2011.324
  20. Andreana, P. R.; McLenllan, J. S.; Chen, Y.; Wang, P. G. Org. Lett. 2002, 4, 3875-3878. https://doi.org/10.1021/ol026710m
  21. Christoffers, J.; Oertling, H.; Fischer, P.; Frey, W. Synlett 2002, 957-961.
  22. Lin, Y. A.; Chalker, J. M.; Davis, B. G. ChemBioChem 2009, 10, 959-969. https://doi.org/10.1002/cbic.200900002
  23. Creighton, C. J.; Reitz, A. B. Org. Lett. 2001, 3, 893-895. https://doi.org/10.1021/ol015530u
  24. Stymiest, J. L.; Mitchell, B. F.; Wong, S.; Vederas, J. C. Org. Lett. 2003, 5, 47-49. https://doi.org/10.1021/ol027160v
  25. Dimartino, G.; Wang, D.; Chapman, R. N.; Arora, P. S. Org Lett. 2005, 7, 2389-2392. https://doi.org/10.1021/ol0506516
  26. Shim, S. Y.; Kim, Y.-W.; Verdine, G. L. Chem. Biol. Drug Des. 2013, 82, 635-642. https://doi.org/10.1111/cbdd.12231
  27. Chen, Y.-H.; Yang, J. T.; Martinez, H. M. Biochemistry 1972, 11, 4120-4131. https://doi.org/10.1021/bi00772a015
  28. Ferre-d'Amare, A. R.; Prendergast, G. C.; Ziff, E. B.; Burley, S. K. Nature 1993, 363, 38-45. https://doi.org/10.1038/363038a0