DOI QR코드

DOI QR Code

Expeditious Synthesis of Natural Benzofuran, Eupomatenoid-6 by Umpolung of α-Aminophosphonates

  • Damodar, Kongara (Department of Chemistry and Institute of Natural Medicine, Hallym University) ;
  • Jun, Jong-Gab (Department of Chemistry and Institute of Natural Medicine, Hallym University)
  • Received : 2014.09.05
  • Accepted : 2014.09.25
  • Published : 2014.12.20

Abstract

Simple and practical synthesis of natural benzofuran derivative eupomatenoid-6 via Horner-Emmons type condensation as the key step is described. The umpolung property of aldehyde derivative, ${\alpha}$-aminophosphonate was efficiently employed in this reaction. ${\alpha}$-Aminophosphonate of anisaldehyde subjected to Horner-Emmons type condensation with 5-bromo-2-methoxybenzaldehyde to yield the deoxybenzoin, which was further methylated and then underwent tandem demethylation-cyclodehydration to afford the benzofuran scaffold in excellent yield. Finally Suzuki coupling with propenyl boronic acid afforded eupomatenoid-6 with an overall yield of 56.8%.

Keywords

References

  1. (a) Dean, F. M.; Sargent, M. V.; Donnely, D. M. X.; Meegan, M. J. In Comprehensive Heterocyclic Chemistry; Katrizky, A., Rees, C. W., Bird, C. W., Cheeseman, G. W. H., Eds.; Pergamon: Oxford; 1984; Vol. 4, pp 531-712.
  2. (b) Rohrkasten, R. In Houben-Weyl Methoden der Organischen Chemie; 4. Aufl., Vol. E6b1, Kreher, R. P., Ed.; Thieme: Stuttgart; 1994, pp 33-162.
  3. (c) Dell, C. B. In Science of Synthesis, Houben-Weyl Methods of Molecular Transformations; Thomas, E. J., Ed.; Thieme: Stuttgart; 2000; Vol. 10, pp 11-86.
  4. (a) Kawasaki, K.; Masubuchi, M.; Morikami, K.; Sogabe, S.; Aoyama, T.; Ebiike, H.; Niizuma, S.; Hayase, M.; Fujii, T.; Sakata, K.; Shidoh, H.; Stiratori, Y.; Aoki, Y.; Ohtsuka, T.; Stimma, N. Bioorg. Med. Chem. Lett. 2003, 13, 87-91. https://doi.org/10.1016/S0960-894X(02)00844-2
  5. (b) Khan, M. W.; Alam, M. J.; Rashid, M. A.; Chowdhury, R. Bioorg. Med. Chem. 2005, 13, 4796-4805. https://doi.org/10.1016/j.bmc.2005.05.009
  6. (a) Crenshaw, R. R.; Jeffries, A. T.; Luke, G. M.; Cheney, L. C.; Bialy, G. J. Med. Chem. 1971, 14, 1185-1190. https://doi.org/10.1021/jm00294a011
  7. (b) Halabalaki, M.; Aligiannis, N.; Papoutsi, Z.; Mitakou, S.; Moutsatsou, P.; Sekeris, C.; Skaltsounis, A.-L. J. Nat. Prod. 2000, 63, 1672-1674. https://doi.org/10.1021/np000071b
  8. (c) Von Angerer, E.; Biberger, C.; Leitchtl, S. Ann. N.Y. Acad. Sci. 1995, 761, 176-191. https://doi.org/10.1111/j.1749-6632.1995.tb31378.x
  9. (d) Teo, C. C.; Kon, O. L.; Sim, K. Y.; Ng, S. C. J. Med. Chem. 1992, 35, 1330-1339. https://doi.org/10.1021/jm00086a002
  10. Hocke, C.; Prante, O.; Lober, S.; Hubener, H.; Gmeiner, P.; Kuwert, T. Bioorg. Med. Chem. Lett. 2004, 14, 3963-3966. https://doi.org/10.1016/j.bmcl.2004.05.052
  11. (a) Cowart, M.; Pratt, J. K.; Stewart, A. O.; Bennani, Y. L.; Esbenshade, T. A.; Hancock, A. A. Bioorg. Med. Chem. Lett. 2004, 14, 689-693. https://doi.org/10.1016/j.bmcl.2003.11.032
  12. (b) Gfesser, G. A.; Faghih, R.; Bennani, Y. L.; Curtis, M. P.; Esbenshade, T. A.; Hancock, A. A.; Cowart, M. D. Bioorg. Med. Chem. Lett. 2005, 15, 2559-2563. https://doi.org/10.1016/j.bmcl.2005.03.047
  13. Hu, Y.; Xiang, J. S.; Di Grandi, M. J.; Du, X.; Ipek, M.; Laakso, L. M.; Li, J.; Li, W.; Rush, T. S.; Schmid, J.; Skotnicki, J. S.; Tam, S.; Thomason, J. R.; Wang, Q.; Levin, J. I. Bioorg. Med. Chem. 2005, 13, 6629-6644. https://doi.org/10.1016/j.bmc.2005.07.076
  14. (a) Ward, R. S. Nat. Prod. Rep. 1997, 14, 43-74. https://doi.org/10.1039/np9971400043
  15. (b) Adams, M.; Pacher, T.; Greger, H.; Bauer, R. J. Nat. Prod. 2005, 68, 83-85. https://doi.org/10.1021/np0497043
  16. (a) Okuro, K.; Furuune, M.; Enna, M.; Miura, M.; Nomura, M. J. Org. Chem. 1993, 58, 4716-4721. https://doi.org/10.1021/jo00069a040
  17. (b) Bates, C. G.; Saejueng, P.; Murphy, J. M.; Venkataraman, D. Org. Lett. 2002, 4, 4727-4729. https://doi.org/10.1021/ol0272040
  18. (c) Bernini, R.; Cacchi, S.; Salve, H. D.; Fabrizi, G. Synthesis 2007, 873-882.
  19. (d) Fiandanese, V.; Bottalico, D. G.; Marchese, A. P. Tetrahedron 2008, 64, 53-60. https://doi.org/10.1016/j.tet.2007.10.100
  20. (e) Liu, J.; Chen, W.; Ji, Y.; Wang, L. Adv. Synth. Catal. 2012, 354, 1585-1592. https://doi.org/10.1002/adsc.201100875
  21. (f) Leibeling, M.; Pawliczek, M.; Kratzert, D.; Stalke, D.; Werz, D. B. Org. Lett. 2012, 14, 346-349. https://doi.org/10.1021/ol2030923
  22. (g) Saha, D.; Dey, R.; Ranu, B. C. Eur. J. Org. Chem. 2010, 31, 6067-6071.
  23. (h) Zanardi, A.; Mata, J. A.; Peris, E. Organometallics 2009, 28, 4335-4339. https://doi.org/10.1021/om900358r
  24. (i) Lingam, V. S.; Vinodkumar, R.; Mukkanti, K.; Thomas, A.; Gopalan, B. Tetrahedron Lett. 2008, 49, 4260-4264. https://doi.org/10.1016/j.tetlet.2008.04.150
  25. (j) Csekei, M.; Novak, Z.; Kotschy, A. Tetrahedron 2008, 64, 8992-8996. https://doi.org/10.1016/j.tet.2008.05.100
  26. Duan, X. F.; Zeng, J.; Zhang, Z. B.; Zi, G. F. J. Org. Chem. 2007, 72, 10283-10286. https://doi.org/10.1021/jo7019652
  27. Miyata, O.; Takeda, N.; Naito, T. Org. Lett. 2004, 6, 1761-1763. https://doi.org/10.1021/ol049564o
  28. Eidamshaus, C.; Burch, J. D. Org. Lett. 2008, 10, 4211-4214. https://doi.org/10.1021/ol801510n
  29. Murphy, S. K.; Bruch, A.; Dong, V. M. Angew. Chem. Int. Ed. 2014, 53, 2455-2499. https://doi.org/10.1002/anie.201309987
  30. Ruan, L.; Shi, M.; Mao, S.; Yu, L.; Yang, F.; Tang, J. Tetrahedron 2014, 70, 1065-1070. https://doi.org/10.1016/j.tet.2013.12.050
  31. (a) Bowden, B. F.; Ritchie, E.; Taylor, W. C. Austr. J. Chem. 1972, 25, 2659-2669. https://doi.org/10.1071/CH9722659
  32. (b) Picker, K.; Ritchie, E.; Taylor, W. C. Austr. J. Chem. 1973, 26, 1111-1119. https://doi.org/10.1071/CH9731111
  33. (c) Read, R. W.; Taylor, W. C. Austr. J. Chem. 1979, 32, 2317-2321. https://doi.org/10.1071/CH9792317
  34. (d) Carroll, A. R.; Taylor, W. C. Austr. J. Chem. 1991, 44, 1615-1626. https://doi.org/10.1071/CH9911615
  35. (e) Carroll, A. R.; Taylor, W. C. Austr. J. Chem. 1991, 44, 627-1633. https://doi.org/10.1071/CH9910627
  36. (a) Chauret, D. C.; Bernard, C. B.; Arnason, J. T.; Durst, T.; Krishnamurty, H. G.; Sanchez-Vindas, P.; Moreno, N.; San Roman, L.; Poveda, L. J. Nat. Prod. 1996, 59, 152-155. https://doi.org/10.1021/np960036y
  37. (b) Tsai, I.-L.; Hsieh, C.-F.; Duh, C.-Y. Phytochemistry 1988, 27, 1371-1374. https://doi.org/10.1016/0031-9422(88)80196-1
  38. (c) Carini, M.; Aldini, G.; Orioli, M.; Facino, R. M. Planta Med. 2002, 68, 193-197. https://doi.org/10.1055/s-2002-23167
  39. (d) Freixa, B.; Vila, R.; Ferro, E. A.; Adzet, T.; CaCigueral, S. Planta Med. 2001, 67, 873-875. https://doi.org/10.1055/s-2001-18838
  40. (a) McKittrick, B. A.; Stevenson, R. J. Chem. Soc. Perkin Trans. 1 1983, 475-483.
  41. (b) Watanabe, M.; Date, M.; Kawanishi, K.; Hori, T.; Furukawa, S. Chem. Pharm. Bull. 1991, 39, 41-48. https://doi.org/10.1248/cpb.39.41
  42. (c) Bach, T.; Bartels, M. Tetrahedron Lett. 2002, 43, 9125-9127. https://doi.org/10.1016/S0040-4039(02)02287-6
  43. (a) Kim, S.-J.; Kim, C. G.; Yun, S.-R.; Kim, J.-K.; Jun, J.-G. Bioorg. Med. Chem. Lett. 2014, 24, 181-185. https://doi.org/10.1016/j.bmcl.2013.11.044
  44. (b) Lee, N. L.; Lee, J. J.; Kim, J.-K.; Jun, J.-G. Bull. Korean Chem. Soc. 2012, 33, 1907-1912. https://doi.org/10.5012/bkcs.2012.33.6.1907
  45. (c) Jeon, J.-H.; Kim, M. R.; Jun, J.-G. Synthesis 2011, 370-373.
  46. (a) Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141-1143. https://doi.org/10.1021/ol990079g
  47. (b) Hazeri, N.; Maghsoodlou, M. T.; Habibi-Khorassani, S. M.; Aboonajmi, J.; Lashkari, M.; Sajadikhah, S. S. Res. Chem. Intermed. 2014, 40, 1781-1788. https://doi.org/10.1007/s11164-013-1081-8
  48. (a) Journet, M.; Cai, D.; Larsen, R. D.; Reider, P. J. Tetrahedron Lett. 1998, 39, 1717-1720. https://doi.org/10.1016/S0040-4039(98)00140-3
  49. (b) Jin, C. H.; Krishnaiah, M.; Sreenu, D.; Subramanyam, V. B.; Rao, K. S.; Mohan, A. V. N.; Park, C.-Y.; Son, J.-Y.; Sheen, Y. Y.; Kim, D.-K. Bioorg. Med. Chem. Lett. 2011, 21, 6049-6053. https://doi.org/10.1016/j.bmcl.2011.08.064
  50. Seemuth, P. D.; Zimmer, H. J. Org. Chem. 1978, 43, 3063-3065. https://doi.org/10.1021/jo00409a030
  51. Takeda, N.; Miyata, O.; Naito, T. Eur. J. Org. Chem. 2007, 9, 1491-1509.

Cited by

  1. Syntheses of Phoyunbenes A-D and Thunalbene for their Anti-Inflammatory Evaluation vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10605
  2. An Expeditious Stereoselective Synthesis of (−)-Pinidinone from Ethyl Acetoacetate vol.37, pp.4, 2016, https://doi.org/10.1002/bkcs.10728
  3. New promising generation of phosphates α-aminophosphonates: Design, synthesis, in-vitro biological evaluation and computational study vol.1247, pp.None, 2014, https://doi.org/10.1016/j.molstruc.2021.131336