DOI QR코드

DOI QR Code

Nanosecond Gated Raman Spectroscopy for Standoff Detection of Hazardous Materials

  • Chung, Jin Hyuk (Institute of Defense Advanced Technology Research, Agency for Defense Development (ADD)) ;
  • Cho, Soo Gyeong (Institute of Defense Advanced Technology Research, Agency for Defense Development (ADD))
  • Received : 2014.07.30
  • Accepted : 2014.08.18
  • Published : 2014.12.20

Abstract

Laser Raman spectroscopy is one of the most powerful technologies for standoff detection of hazardous materials including explosives. Supported by recent development of laser and sensitive ICCD camera, the technology can identify trace amount of unknown substances in a distance. Using this concept, we built a standoff detection system, in which nanosecond pulse laser and nanosecond gating ICCD technique were delicately devised to avoid the large background noise which suppressed weak Raman signals from the target sample. In standoff detection of explosives which have large kill radius, one of the most important technical issues is the detection distance from the target. Hence, we focused to increase the detection distance up to 54 m by careful optimization of optics and laser settings. The Raman spectra of hazardous materials observed at the distance of 54 m were fully identifiable. We succeeded to detect and identify eleven hazardous materials of liquid or solid particles, which were either explosives or chemical substances used frequently in chemical plants. We also performed experiments to establish the limit of detection (LOD) of HMX at 10 m, which was estimated to be 6 mg.

Keywords

References

  1. Annual Report FY 2008; Joint Improvised Explosive Device Defeat Organization (JIEDDO), Washington D.C., USA, 2009.
  2. Chung, J. H.; Cho, S. G. Bull. Korean Chem. Soc. 2013, 34, 1668. https://doi.org/10.5012/bkcs.2013.34.6.1668
  3. Efremov, E. V.; Buijs, J. B.; Gooijer, C.; Ariese, F. Appl. Spectrosc. 2007, 61, 571. https://doi.org/10.1366/000370207781269873
  4. Pettersson, A.; Johansson, I.; Wallin, S.; Markus, N.; Ostmark, H. Propell. Explos. Pyrotech. 2009, 34, 297. https://doi.org/10.1002/prep.200800055
  5. Sharma, S. K.; Angel, S. M.; Chosh, M.; Hubble, H. W.; Lucey, P. G. Appl. Spectrosc. 2002, 56, 699. https://doi.org/10.1366/000370202760077630
  6. Gillet, P.; Le Cleach, A.; Madon, M. J. Geophys. Res. 1990, 95, 21635. https://doi.org/10.1029/JB095iB13p21635
  7. Clarkson, J.; Smith, W. E.; Batcheler, D. N.; Smith, D. A.; Coats, A. M. J. Mol. Struct. 2003, 648, 203. https://doi.org/10.1016/S0022-2860(03)00024-3
  8. Rice, B. M.; Chabalowski, C. F. J. Phys. Chem. A 1997, 101, 8720. https://doi.org/10.1021/jp972062q
  9. Brand, H. V.; Rabie, R. L.; Funk, D. J.; Diaz-Acosta, I.; Pulay, P.; Lippert, T. K. J. Phys. Chem. B 2002, 106, 10594. https://doi.org/10.1021/jp020909z
  10. Goetz, F.; Brill, T. B. J. Phys. Chem. 1979, 83, 340. https://doi.org/10.1021/j100466a008
  11. Gaft, M.; Nagli, L. Opt. Mater. 2008, 30, 1739. https://doi.org/10.1016/j.optmat.2007.11.013
  12. Oxley, J.; Smith, J.; Brady, J.; Dubnikova, F.; Kosloff, R.; Zeiri, L.; Zeiri, Y. Appl. Spectro. 2008, 62, 8. https://doi.org/10.1366/000370208783412591
  13. Savitsky, A.; Golay, M. J. E. Anal. Chem. 1964, 36, 1627. https://doi.org/10.1021/ac60214a047
  14. Carter, J. C.; Angel, S. M.; Lawrence-Snyder, M.; Scaffidi, J.; Whipple, R. E.; Reynolds, J. G. Appl. Spectrosc. 2005, 59, 769. https://doi.org/10.1366/0003702054280612
  15. Fleger, Y.; Nagli, L.; Gaft, M.; Rosenbluh, M. J. Lumines. 2009, 129, 979. https://doi.org/10.1016/j.jlumin.2009.04.008
  16. Akeson, M.; Nordberg, M.; Ehlerding, A.; Nilsson, L.; Ostmark, H.; Strombeck, P. Proc. SPIE 2011, 8017, 8017C-1.

Cited by

  1. Proximal Detection of Traces of Energetic Materials with an Eye-Safe UV Raman Prototype Developed for Civil Applications vol.16, pp.1, 2015, https://doi.org/10.3390/s16010008
  2. Recent Developments in Spectroscopic Techniques for the Detection of Explosives vol.11, pp.8, 2018, https://doi.org/10.3390/ma11081364
  3. Graphene oxide-silver nanocomposite SERS substrate for sensitive detection of nitro explosives vol.31, pp.2, 2014, https://doi.org/10.1007/s10854-019-02621-1