DOI QR코드

DOI QR Code

SBA-15 Supported Fe, Ni, Fe-Ni Bimetallic Catalysts for Wet Oxidation of Bisphenol-A

  • Mayani, Suranjana V. (Department of Advanced Materials Chemistry, College of Science and Technology, Dongguk University) ;
  • Mayani, Vishal J. (Department of Advanced Materials Chemistry, College of Science and Technology, Dongguk University) ;
  • Kim, Sang Wook (Department of Advanced Materials Chemistry, College of Science and Technology, Dongguk University)
  • Received : 2014.07.23
  • Accepted : 2014.08.18
  • Published : 2014.12.20

Abstract

Bisphenol A is considered as pollutant, because it is toxic and hazardous to living organisms even at very low concentrations. Biological oxidation used for removing this organic from waste water is not suitable and consequently application of catalytic wet oxidation has been considered as one of the best options for treating bisphenol A. We have developed Fe/SBA-15, Ni/SBA-15 and Fe-Ni/SBA-15 as heterogeneous catalysts using the advanced impregnation method for oxidation of bisphenol A in water. The catalysts were characterized with physico-chemical characterization methods such as, powder X-ray diffraction (PXRD), FT-IR measurements, N2 adsorption-desorption isotherm, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. This work illustrates activity of the catalysts for heterogeneous catalytic degradation reaction revealed with excellent conversion and recyclability. The degradation products identified were not persistent pollutants. GC-MS analysis identified the products: 2,4-hexadienedioic acid, 2,4-pentadienic acid and isopropanol or acetic acid. The leachability study indicated that the catalysts release very little metals to water. Therefore, the possibility of water contamination through metal leaching was almost negligible.

Keywords

References

  1. Xu, J.; Tang, T.; Zhang, K.; Ai, S.; Du, H. Process Biochem. 2011, 46, 1160-1165. https://doi.org/10.1016/j.procbio.2011.02.004
  2. Fu, P.; Zhang, P. App. Catal. B: Environ. 2010, 96, 176-184. https://doi.org/10.1016/j.apcatb.2010.02.017
  3. Suzuki, N.; Hattori, A. Life Sci. 2003, 73(17), 2237-2247. https://doi.org/10.1016/S0024-3205(03)00603-9
  4. Nakagawa, Y.; Tayama, S. Arch. Toxicol. 2000, 74(2), 99-105. https://doi.org/10.1007/s002040050659
  5. Gupta, V. K.; Ali, I.; Saini, V. K. Environ. Sci. Technol. 2004, 38, 4012-4018. https://doi.org/10.1021/es049539d
  6. Jain, A. K.; Gupta, V. K.; Jain, S.; Suhas. Environ. Sci. Technol. 2004, 38, 1195-1200. https://doi.org/10.1021/es034412u
  7. Tang, T.; Fan, H.; Ai, S.; Han, R.; Qiu, Y. Chemosphere 2011, 83, 255-264. https://doi.org/10.1016/j.chemosphere.2010.12.075
  8. Jardim, W. F.; Moraes, S. G.; Takiyama, M. M. K. Water Res. 1997, 31, 1728-1732. https://doi.org/10.1016/S0043-1354(96)00349-1
  9. Danis, T. G.; Albanis, T. A.; Petrakis, D. E.; Promonis, P. J. Water Res. 1998, 32(2), 295-302. https://doi.org/10.1016/S0043-1354(97)00206-6
  10. Glaze, W. H.; Kang, J. W.; Chapin, D. H. Ozone-Sci. Eng. 1987, 9, 335-352. https://doi.org/10.1080/01919518708552148
  11. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834-10843. https://doi.org/10.1021/ja00053a020
  12. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024-6036. https://doi.org/10.1021/ja974025i
  13. Mayani, S. V.; Mayani, V. J.; Kim, S. W. Canad. J. Chem. Eng. 2013, 91(7), 1270-1280. https://doi.org/10.1002/cjce.21737
  14. Liu, H.; Li, Y.; Wu, H.; Takayama, H.; Miyake, T.; He, D. Catal. Comm. 2012, 28, 168-173. https://doi.org/10.1016/j.catcom.2012.08.035
  15. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548-552. https://doi.org/10.1126/science.279.5350.548
  16. Vinu, A.; Sawant, D. P.; Ariga, K.; Hossain, K. Z.; Halligudi, S. B.; Hartmann, M.; Nomura, M. Chem. Mater. 2005, 17, 5339-5345. https://doi.org/10.1021/cm050883z
  17. Selvaraj, M.; Kawi, S. Chem. Mater. 2007, 19, 509-519. https://doi.org/10.1021/cm062009r
  18. Liu, H.; Wang, H.; Shen, J.; Sun, Y.; Liu, Z. Catal. Today 2008, 131, 444-449. https://doi.org/10.1016/j.cattod.2007.10.048
  19. Hu, L.; Yang, X.; Dang, S. App. Catal. B: Environ. 2011, 102, 19-26. https://doi.org/10.1016/j.apcatb.2010.11.019
  20. Calleja, G.; Melero, J. A.; Martinez, F.; Molina, R. Water Res. 2005, 39, 1741-1750. https://doi.org/10.1016/j.watres.2005.02.013
  21. Busuioc, A. M.; Meynen, V.; Beyers, E.; Mertens, M.; Cool, P.; Bilba, N.; Vansant, E.F. Appl. Catal. A: General 2006, 312, 153-164. https://doi.org/10.1016/j.apcata.2006.06.043
  22. Melero, J. A.; Martinez, F.; Botas, J. A.; Molina, R.; Pariente, M. I. Water Res. 2009, 43, 4010-4018. https://doi.org/10.1016/j.watres.2009.04.012
  23. Shukla, P.; Wang, S.; Sun, H.; Ang, H.-M.; Tade, M. Chem. Eng. J. 2010, 164, 255-260. https://doi.org/10.1016/j.cej.2010.08.061
  24. Imamura, S. Ind. Eng. Chem. Res. 1999, 38, 1743-1753. https://doi.org/10.1021/ie980576l
  25. Brieler, F. J.; Grundmann, P.; Froba, M.; Chen, L.; Klar, P. J.; Heimbrodt, W.; Nidda, H. A. K. V.; Kurz, T.; Loidl, A. J. Am. Chem. Soc. 2004, 126, 797-807. https://doi.org/10.1021/ja038960j
  26. Huang, R.; Yan, H.; Li L.; Deng, D.; Shu, Y.; Zhang, Q. Appl. Catal. B: Environ. 2011, 106, 264-271.
  27. Jung, H.; Kim, J.-W.; Cho, Y.-G.; Jung, J.-S.; Lee, S.-H.; Choi, J.-G. Appl. Catal. A: General 2009, 368, 50-55. https://doi.org/10.1016/j.apcata.2009.08.010
  28. Chiang, H.-L.; Wu, T.-N.; Ho, Y.-S.; Zeng, L.-X. J. Hazard. Mater. 2014, 276, 43-51. https://doi.org/10.1016/j.jhazmat.2014.05.016
  29. Calles, J. A.; Carrero, A.; Vizcaino A. J. Microporous Mesoporous Mater. 2009, 119, 200-207. https://doi.org/10.1016/j.micromeso.2008.10.028
  30. Zhao, M.; Church, T. L.; Harris, A. T. Appl. Catal. B: Environ. 2011, 101, 522-530. https://doi.org/10.1016/j.apcatb.2010.10.024
  31. Ioan, I.; Wilson, S.; Lundanes, E.; Neculai, A. J. Hazard. Mater. 2007, 142, 559-563. https://doi.org/10.1016/j.jhazmat.2006.08.015
  32. WHO, Guidelines for Drinking-Water Quality, 3rd ed.; 1: Recommendations, World Health Organization, Geneva, 2004.
  33. Stoyanova, M.; Christoskova, St.; Georgieva, M. Appl. Catal. A: General 2003, 249, 295-302. https://doi.org/10.1016/S0926-860X(03)00229-1

Cited by

  1. Atmospheric Pressure Plasma Treatment of Aqueous Bisphenol A Solution vol.26, pp.3, 2015, https://doi.org/10.14478/ace.2015.1029
  2. Catalytic Liquid-Phase Oxidation of Phenolic Compounds Using Ceria-Zirconia Based Catalysts vol.6, pp.2296-2646, 2018, https://doi.org/10.3389/fchem.2018.00553
  3. Metal-Loaded Carbonated Mesoporous Calcium Silicates: Synthesis, Characterization, and Application for Diclofenac Removal from Water vol.58, pp.48, 2014, https://doi.org/10.1021/acs.iecr.9b03903