DOI QR코드

DOI QR Code

Temperature and Electric Field Effect on Proton Transfer in Adenine-thymine

  • Received : 2014.04.12
  • Accepted : 2014.08.17
  • Published : 2014.12.20

Abstract

In theoretical simulations of proton transfer in DNA, environmental factors nearly have not been considered. In our calculations, using QM/MM method on the basis of CP2K, proton transfer on adenine-thymine base pair is studied in water, at wide scope temperature, and under the external electric field. Our results indicate that the external electric field induces the proton transfer at room temperature, and its intensity and temperature have some effect on hole localization and proton transfer.

Keywords

References

  1. Lowdin, P.-O. Rev. Mod. Phys. 1963, 35, 724-732. https://doi.org/10.1103/RevModPhys.35.724
  2. Lwdin, P.-O. Adv. Quantum Chem. 1966, 2, 213-360. https://doi.org/10.1016/S0065-3276(08)60076-3
  3. Gu, J.; Wang, J.; Rak, J.; Leszczynski, J. Angew. Chem. Int. Ed. 2007, 46(19), 3479-3481. https://doi.org/10.1002/anie.200604603
  4. Dabkowska, I.; Rak, J.; Gutowski, M. Eur. Phys. J.D 2005, 35(2), 429-435. https://doi.org/10.1140/epjd/e2005-00218-2
  5. Wagenknecht, H.-A. Angew. Chem. Int. Ed. 2003, 42(22), 2454-2460. https://doi.org/10.1002/anie.200301629
  6. Ito, T.; Rokita, S. E. Angew. Chem. Int. Ed. 2004, 43(14), 1839-1842. https://doi.org/10.1002/anie.200353038
  7. Ghosh, A. K.; Schuster, G. B. J. Am. Chem. Soc. 2006, 128(13), 4172-4173. https://doi.org/10.1021/ja0573763
  8. Steenken, S.; Telo, J. P.; Novais, H. M.; Candeias, L. P. J. Am. Chem. Soc. 1992, 114(12), 4701-4709. https://doi.org/10.1021/ja00038a037
  9. Candeias, L. P.; Steenken, S. J. Am. Chem. Soc. 1989, 111(3), 1094-1099. https://doi.org/10.1021/ja00185a046
  10. Steenken, S. Chem. Rev. 1989, 89(3), 503-520. https://doi.org/10.1021/cr00093a003
  11. Szyperska, A.; Rak, J.; Leszczynski, J.; Li, X.; Ko, Y. J.; Wang, H.; Bowen, K. H. J. Am. Chem. Soc. 2009, 131(7), 2663-2669. https://doi.org/10.1021/ja808313e
  12. Florian, J.; Hrouda, V.; Hobza, P. J. Am. Chem. Soc. 1994, 116(4), 1457-1460. https://doi.org/10.1021/ja00083a034
  13. Gu, J.; Leszczynski, J. J. Phys. Chem. A 1999, 103(15), 2744-2750. https://doi.org/10.1021/jp982713y
  14. Noguera, M.; Bertran, J.; Sodupe, M. J. Phys. Chem. B 2008, 112(15), 4817-4825. https://doi.org/10.1021/jp711982g
  15. Ceron-Carrasco, J. P.; P.n-Carrasco, J.; Requena, A.; Michaux, C.; Perpote, E. A.; Jacquemin, D. J. Phys. Chem. A 2009, 113(27), 7892-7898. https://doi.org/10.1021/jp900782h
  16. Kinz-Thompson, C.; Conwell, E. J. Phys. Chem. Lett. 2010, 1(9), 1403-1407. https://doi.org/10.1021/jz100214h
  17. Cheatham, T. E., III; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Goetz, A. W.; Kolossvry, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wolf, R. M.; Liu, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M. G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Case, D. A.; Darden, T. A.; Kollman, P. A. AMBER 12. University of California, San Francisco, 2012.
  18. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
  19. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
  20. Mantz, Y. A.; Gervasio, F. L.; Laino, T.; Parrinello, M. Phys. Rev. Lett. 2007, 99, 058104. https://doi.org/10.1103/PhysRevLett.99.058104
  21. Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048-5079. https://doi.org/10.1103/PhysRevB.23.5048
  22. Mantz, Y. A.; Gervasio, F. L.; Laino, T.; Parrinello, M. J. Phys. Chem. A 2007, 111(1), 105-112. https://doi.org/10.1021/jp063080n
  23. Rakhmanova, S. V.; Conwell, E. M. J. Phys. Chem. B 2001, 105(10), 2056-2061. https://doi.org/10.1021/jp0036285
  24. Sugiyama, H.; Saito, I. J. Am. Chem. Soc. 1996, 118(30), 7063-7068. https://doi.org/10.1021/ja9609821
  25. Giese, B.; Spichty, M. ChemPhysChem 2000, 1(4), 195-198. https://doi.org/10.1002/1439-7641(20001215)1:4<195::AID-CPHC195>3.0.CO;2-B
  26. Giese, B.; Wessely, S. Chem. Commun. 2001, 2108-2109.
  27. Delaney, S.; Barton, J. K. J. Org. Chem. 2003, 68(17), 6475-6483. https://doi.org/10.1021/jo030095y
  28. Genereux, J. C.; Barton, J. K. Chem. Rev. 2010, 110(3), 1642-1662. https://doi.org/10.1021/cr900228f
  29. Vura-Weis, J.; Wasielewski, M. R.; Thazhathveetil, A. K.; Lewis, F. D. J. Am. Chem. Soc. 2009, 131(28), 9722-9727. https://doi.org/10.1021/ja9015217
  30. Sontz, P. A.; Muren, N. B.; Barton, J. K. Acc. Chem. Res. 2012, 45(10), 1792-1800. https://doi.org/10.1021/ar3001298
  31. Williams, T. T.; Odom, D. T.; Barton, J. K. J. Am. Chem. Soc. 2000, 122(37), 9048-9049. https://doi.org/10.1021/ja001552k
  32. Ceron-Carrasco, J. P.; Jacquemin, D. Phys. Chem. Chem. Phys. 2013, 15, 4548-4553. https://doi.org/10.1039/c2cp44066k
  33. Ceron-Carrasco, J. P.; Jacquemin, D. Chem. Commun. 2013, 7578-7580.