DOI QR코드

DOI QR Code

Synthesis of Magnetic Sonophotocatalyst and its Enhanced Biodegradability of Organophosphate Pesticide

  • Lirong, Meng (School of Chemical Engineering, Anhui University of Science and Technology) ;
  • Jianjun, Shi (School of Chemical Engineering, Anhui University of Science and Technology) ;
  • Ming, Zhao (School of Chemical Engineering, Anhui University of Science and Technology) ;
  • Jie, He (School of Chemical Engineering, Anhui University of Science and Technology)
  • Received : 2014.07.26
  • Accepted : 2014.08.14
  • Published : 2014.12.20

Abstract

A magnetic sonophotocatalyst $Fe_3O_4@SiO_2@TiO_2$ is synthesized for the enhanced biodegradability of organophosphate pesticide. The as-prepared catalysts were characterized using different techniques, such as X-ray diffraction (XRD) and transmission electron microscopy (TEM). The radial sonophotocatalytic activity of $Fe_3O_4@SiO_2@TiO_2$ nanocomposite was investigated, in which commercial dichlorvos (DDVP) was chosen as an object. The degradation efficiency was evaluated in terms of chemical oxygen demand (COD) and enhancement of biodegradability. The effect of different factors, such as reaction time, pH, the added amount of catalyst on $COD_{Cr}$ removal efficiency were investigated. The average $COD_{Cr}$ removal efficiency reached 63.13% after 240 min in 12 L sonophotocatalytic reactor (catalyst $0.2gL^{-1}$, pH 7.3). The synergistic effect occurs in the combined sonolysis and photocatalysis which is proved by the significant improvement in $COD_{Cr}$ removal efficiency compared with that of solo photocatalysis. Under this experimental condition, the $BOD_5/COD_{Cr}$ ratio rose from 0.131 to 0.411, showing a remarkable improvement in biodegradability. These results showed that sonophotocatalysis may be applied as pre-treatment of pesticide wastewater, and then for biological treatment. The synthesized magnetic nanocomposite had good photocatalytic performance and stability, as when it was used for the fifth time, the $COD_{Cr}$ removal efficiency was still about 62.38%.

Keywords

References

  1. Pirsaheb, M.; Fattahi, N.; Shamsipur, M. Food Control 2013, 34, 378. https://doi.org/10.1016/j.foodcont.2013.05.013
  2. Naman, S. A.; Khammas, Z. A. A.; Hussein, F. M. J. Photochem. Photobiol. A: Chem. 2002, 153, 229. https://doi.org/10.1016/S1010-6030(02)00235-6
  3. Senthilnathan, J.; Philip, L. Chem. Eng. J. 2011, 172, 678. https://doi.org/10.1016/j.cej.2011.06.035
  4. Gomez, S.; Marchena, C. L.; Pizzio, L., Pierella, L. J. Hazard. Mater. 2013, 258, 19.
  5. Cycon, M.; Wójcik, M.; Piotrowska-Seget, Z. Chemosphere 2009, 76, 494. https://doi.org/10.1016/j.chemosphere.2009.03.023
  6. Schramm, J. D.; Hua, I. Water Res. 2001, 35, 665. https://doi.org/10.1016/S0043-1354(00)00304-3
  7. Rotich, H. K.; Zhang, Z. Y.; Zhao, Y. S.; Li, J. C. Intern. J. Environ. Anal. Chem. 2004, 84, 289. https://doi.org/10.1080/03067310310001637694
  8. Fujishima, A.; Honda, K. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  9. Chen, X. B.; Mao, S. S. Chem. Rev. 2007, 107, 2891. https://doi.org/10.1021/cr0500535
  10. Reyes-Gil, K. R.; Robinson, D. B. ACS Appl. Mater. Interface 2013, 5, 12400. https://doi.org/10.1021/am403369p
  11. Pozzo, R. L.; Baltanas, M. A.; Cassano, A. E. Catal. Today 1997, 39, 219. https://doi.org/10.1016/S0920-5861(97)00103-X
  12. Polshettiwar, V.; Luque, R.; Fihri, A. Zhu, H.; Bouhrara, M., Basset, J. M. Chem. Rev. 2011, 111, 3036. https://doi.org/10.1021/cr100230z
  13. Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. J. Am. Chem. Soc. 2011, 133, 15830. https://doi.org/10.1021/ja2055287
  14. Linley, S.; Leshuk, T.; Gu, F. X. ACS Appl. Mater. Interfaces 2013, 5, 2540. https://doi.org/10.1021/am303117g
  15. Yuan, Q.; Li, N.; Geng, W. C.; Chi, Y.; Li, X. T. Mater. Res. Bull. 2012, 47, 2396. https://doi.org/10.1016/j.materresbull.2012.05.031
  16. Yang, J.; Cui, S. H.; Lian, H. Z. Chinese J. Inorg. Chem. 2013, 29, 2043.
  17. Fan, Y.; Ma, C.; Li, W.; Yin, Y. Mat. Sci. Semicon. Proc. 2012, 15, 582. https://doi.org/10.1016/j.mssp.2012.04.013
  18. Adewuyi, Y. G. Environ. Sci. Technol. 2005, 39, 8557. https://doi.org/10.1021/es0509127
  19. Taghizadeh, M. T.; Abdollahi, R. Ultrason. Sonochem. 2011, 18, 149. https://doi.org/10.1016/j.ultsonch.2010.04.004
  20. Ahmad, M.; Ahmed, E.; Hong, Z. L.; Ahmed, W.; Khalid, N. R. Ultrason. Sonochem. 2014, 21, 761. https://doi.org/10.1016/j.ultsonch.2013.08.014
  21. Liberatore, L.; Bressan, M.; Belli, C.; Lustrato, G.; Ranalli, G. Water Air Soil Poll. 2012, 233, 4751.
  22. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. J. Am. Chem. Soc. 2008, 130, 28. https://doi.org/10.1021/ja0777584
  23. Shi, J. J.; Meng, L. R.; Hu, W.; He, J.; Hou, G. H. Asian J. Chem. 2014, 26, 1771.
  24. Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Aguera, A.; Puma, G. L.; Malato, S. Appl. Catal. B: Environ. 2012, 128, 119. https://doi.org/10.1016/j.apcatb.2012.03.034
  25. Zhao, C.; Pelaez, M.; Duan, X.; Deng, H.; O'Shea, K.; Fatta-Kassinos, Dionysiou, D. D. Appl. Catal. B: Environ. 2013, 134-135, 83. https://doi.org/10.1016/j.apcatb.2013.01.003
  26. Evgenidou, E.; Fytianos, K.; Poulios, I. Appl. Catal. B: Environ. 2005, 59, 81. https://doi.org/10.1016/j.apcatb.2005.01.005
  27. Gogate, P. R.; Pandit, A. B. AIChE J. 2004, 50, 1051. https://doi.org/10.1002/aic.10079
  28. Kaur, S.; Singh, V. Ultrason. Sonochem. 2007, 14, 531. https://doi.org/10.1016/j.ultsonch.2006.09.015
  29. Singh, H. K.; Muneer, M.; Bahnemann, D. Photochem. Photobiol. Sci. 2003, 2, 151. https://doi.org/10.1039/b206918k
  30. Bokhale, N. B.; Bomble, S. D.; Dalbhanjan, R. R.; Mahale, D. D.; Hinge, S. P.; Banerjee, B. S.; Mohod, A. V.; Gogate, P. R. Ultrason. Sonochem. 2014, 21, 1797. https://doi.org/10.1016/j.ultsonch.2014.03.022
  31. Sleiman, M.; Ferronato, C.; Chovelon, J. M. Environ. Sci. Technol. 2008, 42, 3018. https://doi.org/10.1021/es702425q
  32. Badawy, M. I.; Gohary, F. E.; Ghaly, M. Y.; Ali, M. E. M. J. Hazard. Mater. 2009, 169, 673. https://doi.org/10.1016/j.jhazmat.2009.04.038
  33. Vera, I.; Saez, K.; Vidal, G. Environ. Technol. 2013, 34, 2267. https://doi.org/10.1080/09593330.2013.765921

Cited by

  1. Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts vol.18, pp.7, 2016, https://doi.org/10.1039/C5CP08041J
  2. The Role of Ultrasound on Advanced Oxidation Processes vol.374, pp.5, 2014, https://doi.org/10.1007/s41061-016-0072-9
  3. The crystal morphology and mechanical properties based on poly(l-lactic acid)/silica nanocomposites vol.213, pp.None, 2014, https://doi.org/10.1088/1757-899x/213/1/012034
  4. Recent advancements in the sonophotocatalysis (SPC) and doped-sonophotocatalysis (DSPC) for the treatment of recalcitrant hazardous organic water pollutants vol.36, pp.None, 2014, https://doi.org/10.1016/j.ultsonch.2016.12.022
  5. Sono‐photo‐assisted heterogeneous activation of peroxymonosulfate by Fe/CMK‐3 catalyst for the degradation of bisphenol A, optimization with response surface methodology vol.92, pp.2, 2014, https://doi.org/10.1002/wer.1181
  6. Improvements in Catalyst Synthesis and Photocatalytic Oxidation Processing Based on the Use of Ultrasound vol.378, pp.2, 2014, https://doi.org/10.1007/s41061-020-0293-9