DOI QR코드

DOI QR Code

Synthesis of Dithiolopyrrolone Derivatives and Their Leukocyte-Increasing Activities

  • Li, Chungang (Shanghai Institute of Pharmaceutical Industry, State Institute of Pharmaceutical Industry) ;
  • Sun, Yiping (Shanghai Shyndec Pharmaceutical Co., Ltd) ;
  • Wang, Guoping (Shanghai Institute of Pharmaceutical Industry, State Institute of Pharmaceutical Industry) ;
  • Tan, Xiangduan (College of pharmacy, Guilin Medical University)
  • Received : 2014.06.27
  • Accepted : 2014.08.11
  • Published : 2014.12.20

Abstract

In search of new antileukopenia agents, twenty dithiolopyrrolone derivatives were synthesized and evaluated for their leukocyte-increasing activities in normal mice. Among the synthesized compounds 4-23, compounds 5 and 6 showed significant leukocyte-increasing activity ( p < 0.01), and compounds 4, 9 and 16 had a moderate effect ( p < 0.05). Compound 5 also displayed stronger leukocyte-increasing activity than that of the positive recombinant human granulocyte colony stimulating factor (rhG-CSF). Above all, compound 5 would be a potential antileukopenia agent which deserved further research.

Keywords

References

  1. Fullwood, V. T. Prim. Care Update OB/Gyns 2001, 8, 226. https://doi.org/10.1016/S1068-607X(01)00086-5
  2. Kumazawa, Y.; Kaneko, M.; Inagaki, K.; Matsuzaki, N.; Nomoto, K. Int. J. Immunopharmac. 1990, 12, 523. https://doi.org/10.1016/0192-0561(90)90116-5
  3. Pisciotta, A. V. Clin. Pharmacol. Ther. 1971, 12, 13.
  4. Bonilla, M. A.; Gillio, A. P.; Ruggeiro, M.; Kernan, N. A.; Brochstein, J. A.; Abboud, M.; Fumagalli, L.; Vincent, M.; Gabrilove, J. L.; Welte, K.; Souza, L. M.; O'Reilly, R. J. N. Engl. J. Med. 1989, 320, 1574. https://doi.org/10.1056/NEJM198906153202402
  5. Molineux, G.; Pojda, Z.; Hampson, I. N.; Lord, B. I.; Dexter, T. M. Blood 1990, 76, 2153.
  6. Lopez, A. F.; Williamson, D. J.; Gamble, J. R.; Begley, C. G.; Harlan, J. M.; Klebanoff, S. J.; Waltersdorph, A.; Wong, G.; Clark, S. C.; Vadas, M. A. J. Clin. Invest. 1986, 78, 1220. https://doi.org/10.1172/JCI112705
  7. Gin-Shaw, S.; Moore, G. P. Emerg. Med. Clin. North. Am. 1993, 11, 495.
  8. Oliva, B.; O'Neill, A.; Wilson, J. M.; O'Hanlon, P. J.; Chopra, I. Antimicrob. Agents Chemother. 2001, 45, 532 . https://doi.org/10.1128/AAC.45.2.532-539.2001
  9. Lamari, L.; Zitouni, A.; Boudjella, H.; Badji, B.; Sabaou, N.; Lebrihi, A.; Lefebvre, G.; Seguin, E.; Tillequin, F. J. Antibiot. 2002, 55, 696. https://doi.org/10.7164/antibiotics.55.696
  10. Bouras, N.; Mathieu, F.; Sabaou, N.; Lebrihi, A. J. Appl. Microbiol. 2006, 100, 390. https://doi.org/10.1111/j.1365-2672.2005.02762.x
  11. Dell, I.; Godfrey, C. R. A.; Wadsworth, D. J. ACS Symp. Ser. 1992, 35, 384.
  12. Bouras, N.; Mathieu, F.; Sabaou, N.; Lebrihi, A. Proc. Biochem. 2007, 42, 925. https://doi.org/10.1016/j.procbio.2007.02.007
  13. Qin, Z.; Huang, S.; Yu, Y.; Deng, H. Mar. Drugs 2013, 11, 3970. https://doi.org/10.3390/md11103970
  14. Liras, P. App. Microbio. Biotechnol. 2014, 98, 1023. https://doi.org/10.1007/s00253-013-5410-z
  15. Minamiguchi, K.; Kumagai, H.; Masuda, T.; Kawada, M.; Ishizuka, M.; Takeuchi, T. Int. J. Cancer 2001, 93, 307. https://doi.org/10.1002/ijc.1321
  16. Li, B.; Lyle, M. P. A.; Chen, G. H.; Li, J.; Hu, K.; Tang, L.; Alaoui-Jamali, M. A.; Webster, J. Bioorg. Med. Chem. 2007, 15, 4601. https://doi.org/10.1016/j.bmc.2007.04.017
  17. Jia, Y.; Wu, S. L.; Isenberg, J. S.; Dai, S., Sipes, J. M.; Field, L.; Zeng, B.; Bandle, R. W.; Ridnour, L. A.; Wink, D. A.; Ramchandran, R.; Karger, B. L.; Roberts, D. D. Cell Stress and Chaperones 2010, 15, 165. https://doi.org/10.1007/s12192-009-0130-0
  18. Ninomiya, Y. T.; Yamada, Y.; Shirai, H.; Onitsuka, M.; Suhara, Y.; Maruyama, H. B. Chem. Pharm. Bull. 1980, 28, 3157. https://doi.org/10.1248/cpb.28.3157
  19. Sun, H. Y.; Li, C. G.; Xiao, Li.; Wang, G. P.; Liu, Q. H. Acta Pharmaceutica Sinica (Chinese) 2010, 45, 797.
  20. Tan, X. D.; Li, C. G.; Yu, Z. P.; Wang, P. F.; Nian, S. Y.; Deng, Y. F.; Wu, W.; Wang, G. P. Chem. Pharm. Bull. 2013, 61, 351. https://doi.org/10.1248/cpb.c12-00791
  21. Lin, Y. H.; Lai, C. C.; Chiu, S. H. Org. Biomol. Chem. 2014, 12, 2907. https://doi.org/10.1039/c3ob42418a
  22. Selvakumar, N.; Rajulu, G. G.; Reddy, K. C.; Chary, B. C.; Kumar P. K.; Madhavi, T.; Praveena, K.; Reddy, K. H.; Takhi, M.; Mallick, A.; Amarnath, P. V.; Kandepu, S.; Iqbal, J. Bioorg. Med. Chem. Lett. 2008, 18, 856. https://doi.org/10.1016/j.bmcl.2007.09.024
  23. Wang, G. P.; Liu, Q. H.; Sun, H. Y.; Wu, W.; Hou, J.; Yao, L.; Li, C. G.; Liu, M. Y.; Li, F.; Wu, X. J.; Zhao, S. EP2192122 A1, 2010.
  24. Bounkham, T. Synthesis 1997, 1997, 1189. https://doi.org/10.1055/s-1997-1335
  25. Gallou, I.; Eriksson, M.; Zeng, X. Z.; Senanayake, C.; Farina, V. J. Org. Chem. 2005, 70, 6960. https://doi.org/10.1021/jo0507643
  26. Vinogradova, E. V.; Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 11132. https://doi.org/10.1021/ja305212v

Cited by

  1. Optimization of Extended-Release ZL-004 Nanosuspensions for In Vivo Pharmacokinetic Study to Enhance Low Solubility and Compliance vol.24, pp.1, 2014, https://doi.org/10.3390/molecules24010007
  2. Discovery of novel N‐aryl pyrrothine derivatives as bacterial RNA polymerase inhibitors vol.96, pp.5, 2020, https://doi.org/10.1111/cbdd.13736