DOI QR코드

DOI QR Code

Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells

  • Yoon, Young-Gon (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Choi, Insoo (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Chang-Ha (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Han, Jonghee (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Cho, EunAe (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Nam, Suk Woo (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lim, Tae-Hoon (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Yoon, Jong Jin (Research & Development Division, Hyundai Motor Company) ;
  • Park, Sehkyu (Department of Chemical Engineering, Kwangwoon University) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2014.06.11
  • Accepted : 2014.08.08
  • Published : 2014.12.20

Abstract

This paper describes how primary contaminants in ambient air affect the performance of the cathode in fuel cell electric vehicle applications. The effect of four atmospheric pollutants ($SO_2$, $NH_3$, $NO_2$, and CO) on cathode performance was investigated by air impurity injection and recovery test under load. Electrochemical analysis via polarization and electrochemical impedance spectroscopy was performed for various concentrations of contaminants during the impurity test in order to determine the origins of performance decay. The variation in cell voltage derived empirically in this study and data reported in the literature were normalized and juxtaposed to elucidate the relationship between impurity concentration and performance. Mechanisms of cathode degradation by air impurities were discussed in light of the findings.

Keywords

References

  1. O'hayer, R. P.; Cha, S.-W.; Colella, W.; Prinz, F. B. Fuel Cell Fundamentals; John Wiley& Sons Ltd.; New York, 2006.
  2. Larminie, J.; Dicks, A. Fuel Cell System Explained; John Wiley & Sons Ltd.; West Sussex; England, 2000.
  3. Prater, K. B. J. Power Sources 1994, 51, 129. https://doi.org/10.1016/0378-7753(94)01934-7
  4. Wang, Y.; Chen, K. S.; Misher, J.; Cho, S. C.; Adroher, X. C. Appl. Energy 2011, 88, 981. https://doi.org/10.1016/j.apenergy.2010.09.030
  5. Barbir, F. PEM Fuel Cells: Theory and Practice, 1st ed.; Elesevier Academic Press: New York, 2005.
  6. Helmot, R.; Eberle, U. J. Power Sources 2007, 165, 833. https://doi.org/10.1016/j.jpowsour.2006.12.073
  7. Bashyam, R.; Zelenay, P. Nature 2006, 443, 63. https://doi.org/10.1038/nature05118
  8. Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. Science 2009, 324, 71. https://doi.org/10.1126/science.1170051
  9. Jaouen, F.; Proietti, E.; Lefevre, M.; Chenitz, R.; Dodelet, J.-P.; Wu, G.; Chung, H. T.; Johnston, C. M.; Zelenay, P. Energ. & Environ. Sci. 2011, 4, 114. https://doi.org/10.1039/c0ee00011f
  10. Huang, S.-Y.; Ganesan, P.; Park, S.; Popov, B. N. J. Am. Chem. Soc. 2009, 131, 13898. https://doi.org/10.1021/ja904810h
  11. Antolini, E. ACS Catal. 2014, 4, 1426. https://doi.org/10.1021/cs4011875
  12. Pascone, P.-A.; Berk, D.; Meunier, J.-L. Catal. Today 2013, 211, 162. https://doi.org/10.1016/j.cattod.2013.03.026
  13. Borup, R.; Meyers, J.; Pipovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; Zeleny, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.; McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.; Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.; Yasuda, K.; Kimijima, K.; Iwashita, N. Chem. Rev. 2007, 107, 3904. https://doi.org/10.1021/cr050182l
  14. Verhage, A. J. L.; Coolegem, J. F.; Mulder, M. J. J.; Yildirim, M. H.; De Bruijn, F. A. Int. J. Hydrogen Energ. 2013, 38, 4714. https://doi.org/10.1016/j.ijhydene.2013.01.152
  15. National Ambient Air Quality Standards. U.S. Environmental Protection Agency. 2007, http://www.epa.gov/air/criteria.html. Accessed July 2013.
  16. Lee, C.; Richer, A.; Lee, H.; Kim, Y. J.; Burrows, J. P.; Lee, Y. G.; Choi, B. C. Atmos. Environ. 2008, 42, 1461. https://doi.org/10.1016/j.atmosenv.2007.11.006
  17. Harkins, J. H.; Nicksic, S. W. Environ. Sci. Technol. 1967, 1(9), 751. https://doi.org/10.1021/es60009a002
  18. Torp, C.; Larssen, S. Sci. Total. Environ. 1996, 189/190, 35. https://doi.org/10.1016/0048-9697(96)05188-1
  19. Murena, F.; Garofalo, N.; Favale, G. Atmos. Environ. 2008, 42, 8204. https://doi.org/10.1016/j.atmosenv.2008.07.048
  20. Moore, J. M.; Adcock, P. L.; Lakeman, J. B.; Mepsted, G. O. J. Power Sources 2000, 85, 254. https://doi.org/10.1016/S0378-7753(99)00341-9
  21. Mohtadi, R.; Lee, W.-K.; Van Zee, J. W. J. Power Sources 2004, 138, 216. https://doi.org/10.1016/j.jpowsour.2004.06.036
  22. Jing, F.; Hou, M.; Shi, W.; Fu, J.; Yu, H.; Ming, P.; Yi, B. J. Power Sources 2007, 166, 172. https://doi.org/10.1016/j.jpowsour.2006.12.103
  23. Nagahara, N.; Sugawara, S.; Shinohara, K. J. Power Sources 2008, 182, 422. https://doi.org/10.1016/j.jpowsour.2007.12.091
  24. Fu, F.; Hou, M.; Du, C.; Shao, Z.; Yi, B. J. Power Sources 2009, 187, 32. https://doi.org/10.1016/j.jpowsour.2008.10.103
  25. Garzon, F. H.; Lopes, T.; Rockward, T.; Sansinena, J.-M.; Kienitz, B.; Mukundan, R.; Springer, T. ECS Trans. 2009, 25(1), 1575.
  26. Yang, D.; Ma, J.; Xu, L.; Wu, M.; Wang, H. Electrochim. Acta 2006, 51, 4039. https://doi.org/10.1016/j.electacta.2005.11.018
  27. Balasubramanian, B.; Barbir, F.; Neutzler, J. 1999, http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/ 44_4_NEW%20ORLEANS_00-99_0977.pdf. Accessed 27 Nov 2013
  28. Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.-S.; Wang, H.; Shen, J. J. Power Sources 2007, 165, 739. https://doi.org/10.1016/j.jpowsour.2006.12.012
  29. Quijada, C.; Rodes, A.; Vazquez, J. L.; Perez, J. M.; Aldaz, A. J. Electroanal. Chem. 1995, 394, 217. https://doi.org/10.1016/0022-0728(95)03988-S
  30. Contractor, A. Q.; Lal, H. J. Electroanal. Chem. 1978, 93, 99.
  31. Uribe, F. A.; Gottesfeld, S.; Zawodzinski, T. A. J. Electrochem. Soc. 2002, 149(3), A293. https://doi.org/10.1149/1.1447221
  32. Soto, H. J.; Lee, W.-K.; Van Zee, J. W.; Murthy, M. Electrochem. Solid St. 2003, 6(7), A133. https://doi.org/10.1149/1.1574651
  33. Halseid, R.; Vie, P. J. S.; Tunold, R. J. Power Sources 2006, 154, 343. https://doi.org/10.1016/j.jpowsour.2005.10.011
  34. Halseid, R.; Vie, P. J. S.; Tunold, R. J. Electrochem. Soc. 2004, 151(3), A381. https://doi.org/10.1149/1.1641035
  35. Hongsirikarn, K.; Goodwin, J. G.; Greenway, S.; Creager, S. J. Power Sources 2010, 195, 30. https://doi.org/10.1016/j.jpowsour.2009.07.013
  36. Springer, T. E.; Rockward, T.; Zawodzinski, T. A.; Gottesfeld, S. J. Electrochem. Soc. 2001, 148(1), A11. https://doi.org/10.1149/1.1344516
  37. Bauman, J. W.; Zawodzinski, T. A., Jr.; Gottesfeld, S. In Proton Conducting Membrane Fuel Cells II, The Electrochemical Society Proceedings Series; Gottesfeld, S., Fuller, T., Eds.; Pennington, NJ, 1999; 98-27, p 136.
  38. Arenz, M.; Mayhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2005, 127, 6819. https://doi.org/10.1021/ja043602h

Cited by

  1. Influence of Nitrogen Compounds on PEMFC: A Comparative Study vol.165, pp.6, 2018, https://doi.org/10.1149/2.0181806jes
  2. Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: Status, technology, and perspectives vol.2, pp.None, 2014, https://doi.org/10.1016/j.adapen.2021.100011