DOI QR코드

DOI QR Code

Anion-Dependent Exocyclic Mercury(II) Coordination Polymers of Bis-dithiamacrocycle

  • Siewe, Arlette Deukam (Department of Chemistry and Research Institute Natural Science, Gyeongsang National University) ;
  • Kim, Seulgi (Department of Chemistry and Research Institute Natural Science, Gyeongsang National University) ;
  • Choi, Kyu Seong (Department of Science Education, Kyungnam University) ;
  • Lee, Shim Sung (Department of Chemistry and Research Institute Natural Science, Gyeongsang National University)
  • Received : 2014.07.09
  • Accepted : 2014.08.07
  • Published : 2014.12.20

Abstract

Synthesis and structural characterization of mercury(II) halides and perchlorate complexes (1-4) of bis-$OS_2$-macrocycle (L) are reported. L reacts with mercury(II) chloride and bromide to yield an isostructural 2D coordination polymers with type $[Hg(L)X_2]_n$ (1: X = Cl and 2: X = Br). In 1, each Hg atom which lies outside the cavity is six-coordinate with a distorted octahedral geometry, being bound to four adjacent ligands via monodentate Hg-S bonds and two remaining sites are occupied by two terminal chlorido ligands to form a fishnet-like 2D structure. When reacting with mercury(II) iodide, L afforded a 1D coordination polymer $\{[Hg_2(L)I_4]{\cdot}CHCl_3\}_n$ (3) in which each exocyclic Hg atom is four-coordinate, being bound to two sulfur donors from different ligands doubly bridging the ligand molecules in a head-to-tail mode. The coordination sphere in 3 is completed by two iodo terminal ligands, adopting a distorted tetrahedral geometry. On reacting with mercury(II) perchlorate, L forms solvent-coordinated 1D coordination polymer $\{[Hg_2(L)(DMF)_6](ClO_4)_4{\cdot}2DMF\}_n$ (4) instead of the anion-coordination. In 4, the Hg atom is five-coordinate, being bound to two sulfur donors from two different ligands doubly bridging the ligand molecules in a side-by-side mode to form a ribbon-like 1D structure. The three remaining coordination sites in 4 are completed by three DMF molecules in a monodentate manner. Consequently, the different structures and connectivity patterns for the observed exocyclic coordination polymers depending on the anions used are influenced not only by the coordination ability of the anions but also by anion sizes.

Keywords

References

  1. Dietrich, B.; Viout, P.; Lehn, J.-M. Macrocyclic Chemistry; VCH: Verlagsgesellschaft, Weinheim, 1993.
  2. Taylor, R. W.; Begum, R. A.; Day, V. W.; Bowman-James, K. Cooperativity and Chelate, Macrocyclic and Cryptate Effects. In Supramolecular Chemistry: From Molecules to Nanomaterials; Gale, P. A., Steed, J. W., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2012; vol. 1, pp 67-93.
  3. Grant, G. J. Dalton Trans. 2012, 41, 8745. https://doi.org/10.1039/c2dt30747b
  4. Barefield, E. K. Coord. Chem. Rev. 2010, 254, 1627.
  5. Lindoy, L. F.; Park, K.-M.; Lee, S. S. Chem. Soc. Rev. 2013, 42, 1713. https://doi.org/10.1039/c2cs35218d
  6. Lee, E.; Lee, S. Y.; Lindoy, L. F.; Lee, S. S. Coord. Chem. Rev. 2013, 257, 3125. https://doi.org/10.1016/j.ccr.2013.08.002
  7. Wolf, R. E.; Hartman, J. R.; Storey, J. M. E.; Foxman, B. M.; Cooper, S. R. J. Am. Chem. Soc. 1987, 109, 4328. https://doi.org/10.1021/ja00248a031
  8. Cooper, S. R.; Rawle, S. C. Struct. Bonding (Berlin) 1990, 72, 3.
  9. Buter, J.; Kellog, R. M.; van Bolhuis, F. J. Chem. Soc., Chem. Commun. 1991 , 910.
  10. Hill, S. E.; Feller, D. J. Phys. Chem. A. 2000, 104, 652. https://doi.org/10.1021/jp993188l
  11. Park, S.; Lee, S. Y.; Park, K.-M.; Lee, S. S. Acc. Chem. Res. 2012, 45, 391. https://doi.org/10.1021/ar200143n
  12. Blake, A. J.; Schroder, M. Adv. Inorg. Chem. 1990, 35, 1. https://doi.org/10.1016/S0898-8838(08)60160-9
  13. Stephen, E.; Blake, A. J.; Carter, E.; Collison, D.; Davies, E. S.; Edge, R.; Lewis, W.; Murphy, D. M.; Wilson, C.; Gould, R. O.; Holder, A. J.; McMaster, J.; Schroder, M. Inorg. Chem. 2012, 51, 1450. https://doi.org/10.1021/ic2017006
  14. An, H.; Bradshaw, J. S.; Izatt, R. M.; Yan, Zhengming, Chem. Rev. 1994, 94, 939. https://doi.org/10.1021/cr00028a005
  15. Loeb, S. J.; Shimizu, G. K. H. Can. J. Chem. 1994, 72, 1728. https://doi.org/10.1139/v94-218
  16. Loeb, S. J.; Shimizu, G. K. H. Inorg. Chem. 1993, 32, 1001. https://doi.org/10.1021/ic00058a041
  17. Siewe, A. D.; Kim, J.-Y.; Kim, S.; Park, I.-H.; Lee, S. S. Inorg. Chem. 2014, 53, 393. https://doi.org/10.1021/ic402346z
  18. Kim, H. J.; Lee, S. S. Inorg. Chem. 2008, 47, 10807. https://doi.org/10.1021/ic801316e
  19. Kim, H. J.; Sultana, K. F.; Lee, J. Y.; Lee, S. S. CrystEngComm 2010, 12, 1494. https://doi.org/10.1039/b921033d
  20. Bruker, APEX2 Version 2009.1-0 Data Collection and Processing Software; Bruker AXS Inc.: Madison, WI, 2008.
  21. Bruker, SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures; Bruker AXS Inc.: Madison, WI, 2001.