DOI QR코드

DOI QR Code

Facile Synthesis of Natural Moracin Compounds using Pd(OAc)2/P(tBu)3-HBF4 as a Sonogashira Coupling Reagent

  • Lee, Jae Jun (Department of Chemistry and Institute of Applied Chemistry, Hallym University) ;
  • Yun, So-Ra (Department of Chemistry and Institute of Applied Chemistry, Hallym University) ;
  • Jun, Jong-Gab (Department of Chemistry and Institute of Applied Chemistry, Hallym University)
  • Received : 2014.05.20
  • Accepted : 2014.08.07
  • Published : 2014.12.20

Abstract

An efficient and practical synthesis of natural moracins, which have diverse range of biological properties including anticancer, antioxidant, and antibacterial activities, has been achieved using $Pd(OAc)_2/P(^tBu)_3-HBF_4$ as a Sonogashira coupling reagent which solved the unreactive problems in case of higher electron density of haloaryl compounds in the reaction. Lowering electron density of halophenol with acetylation and changing Sonogashira coupling reagent from $PdCl_2(PPh_3)_2$ to $Pd(OAc)_2/P(^tBu)_3-HBF_4$ smoothly produce the benzofuran structures in the syntheses of moracins M, N and S. The electron deficient halobenzaldehyde, however, easily forms the benzofuran using original Sonogashira conditions, and utilized for the first synthesis of moracin Y.

Keywords

References

  1. (a) Yang, Y.; Gong, T.; Liu, C.; Chen, R.-Y. Chem. Pharm. Bull. 2010, 58, 257-260. https://doi.org/10.1248/cpb.58.257
  2. (b) Kapache, G. D. W. F.; Fozing, C. D.; Donfack, J. H.; Fotso, G. W.; Amadou, D.; Tchana, A. N.; Bezabih, M.; Moundipa, P. F.; Ngadjui, B. T.; Abegaz, B. M. Phytochemistry 2009, 70, 216-221 https://doi.org/10.1016/j.phytochem.2008.12.014
  3. Naowaboot, J.; Pannangpetch, P.; Kukongviriyapan, V.; Kongyingyoes, B.; Kukongviriyapan, U. Plant Food Human Nut. 2009, 64, 116-121. https://doi.org/10.1007/s11130-009-0112-5
  4. Ahn, K.-S.; Sim, W.-S.; Kim, I.-H. Planta Med. 1996, 62, 7-9. https://doi.org/10.1055/s-2006-957785
  5. Khyade, V. B.; Khyade, V. V.; Khyade, S. V. IOSR J. Environ. Sci. Toxicol. Food Tech. 2013, 4, 96-104. https://doi.org/10.9790/2402-04596104
  6. Chen, S.-K.; Zhao, P.; Shao, Y.-X..; Li, Z.; Zhang, C.; Liu, P.; He, X.; Luo, H.-B.; Hu, X. Bioorg. Med. Chem. Lett. 2012, 22, 3261-3264. https://doi.org/10.1016/j.bmcl.2012.03.026
  7. Yadav, A. V.; Kawale, L. A.; Nade, V. S. Indian J. Pharm. 2008, 40, 32-36. https://doi.org/10.4103/0253-7613.40487
  8. Aditya, R. S. J.; Ramesh, C. K.; Basavaraj, P.; Jamuna, K. S. RJPBCS 2013, 4, 822.
  9. Zeni, A. L. B.; Dall'Molin, M. Rev. Bras. Farmacogn. Braz. J. Pharm. 2010, 20, 130-133. https://doi.org/10.1590/S0102-695X2010000100025
  10. Yang, Z.-G.; Matsuzaki, K.; Takamatsu, S.; Kitanaka, S. Molecules 2011, 16, 6010-6022. https://doi.org/10.3390/molecules16076010
  11. Deshpande, V. H.; Spinivasan, R.; Rama Rao, A. V. Indian J. Chem. 1975, 13, 453-457.
  12. (a) Clough, J. M.; Mann, I. S.; Widdowson, D. A. Tetrahedron Lett. 1987, 28, 2645-2648. https://doi.org/10.1016/S0040-4039(00)96171-9
  13. (b) Mann, I. S.; Widdowson, D. A. Clough, J. M. Tetrahedron 1991, 47, 7981-7990. https://doi.org/10.1016/S0040-4020(01)81951-7
  14. Watanabe, M.; Kawanishi, K.; Furukawa, S. Chem. Pharm. Bull. 1991, 39, 579-583. https://doi.org/10.1248/cpb.39.579
  15. Arias, L.; Vara, Y.; Cossio, F. P. J. Org. Chem. 2012, 77, 266-275. https://doi.org/10.1021/jo201841y
  16. (a) Kinoshita, T.; Ichinose, K. Heterocycles 2005, 65, 1641-1654. https://doi.org/10.3987/COM-05-10424
  17. (b) Celaje, J. A.; Zhang, D.; Guerrero, A. M.; Selke, M. Org. Lett. 2011, 13, 4846-4849. https://doi.org/10.1021/ol201922u
  18. (a) Hiroya, K.; Suzuki, N.; Yasuhara, A.; Egawa, Y.; Kasano, A.; Sakamoto, T. J. Chem. Soc. Perkin Trans. 1 2000, 4339-4346.
  19. (b) Yue, D.; Yao, T.; Larock, R. J. Org. Chem. 2005, 70, 10292-10296. https://doi.org/10.1021/jo051299c
  20. (c) Carril, M.; Correa, A.; Bolm, C. Angew. Chem. Int. Ed. 2008, 47, 4862-4865. https://doi.org/10.1002/anie.200801539
  21. (d) Bang, H. B.; Han, S. Y.; Choi, D. H.; Hwang, J. W.; Jun, J.-G. ARKIVOC 2009, (ii), 112-125.
  22. Netherton, M. R.; Fu, G. C. Org. Lett. 2001, 3, 4295-4298. https://doi.org/10.1021/ol016971g
  23. Novak, Z.; Timari, G.; Kotschy, A. Tetrahedron 2003, 59, 7509-7513. https://doi.org/10.1016/S0040-4020(03)01170-0
  24. Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020-18021. https://doi.org/10.1021/ja056800x
  25. Tolman, C. A. Chem. Rev. 1977, 77, 313-348. https://doi.org/10.1021/cr60307a002
  26. (a) Matsuyama, S.; Kuwahara, Y.; Suzuki, T. Agric. Biol. Chem. 1991, 55, 1409-1410. https://doi.org/10.1271/bbb1961.55.1409
  27. (b) Matsuyama, S.; Kuwahara, Y.; Nakamura, S.; Suzuki, T. Agric. Biol. Chem. 1991, 55, 1339-1341.
  28. Yang, Z.; Wang, Y.; Wang, Y.; Zang, Y. Food Chem. 2012, 131, 617-625. https://doi.org/10.1016/j.foodchem.2011.09.040
  29. Royer, M.; Rodrigues, A. M. S.; Herbette, G.; Beauchene, J.; Chevalier, M.; Herault, B.; Thibaut, B.; Stien, D. Int. Biodeterior. Biodegrad. 2012, 70, 55-59. https://doi.org/10.1016/j.ibiod.2011.10.016
  30. Jeon, J.-H.; Kim, M. R.; Jun, J.-G. Synthesis 2011, 43, 370-376.

Cited by

  1. Diversity Oriented Synthesis of Natural 2-Arylbenzofuran, Moracin F vol.37, pp.8, 2016, https://doi.org/10.1002/bkcs.10847
  2. -Catalyzed Tandem Coupling/Cyclization Reaction: Mechanistic Studies and Application to the Synthesis of Stemofuran A and Moracin M vol.5, pp.11, 2016, https://doi.org/10.1002/ajoc.201600321
  3. Functional group manoeuvring for tuning stability and reactivity: synthesis of cicerfuran, moracins (D, E, M) and chromene-fused benzofuran-based natural products vol.15, pp.44, 2017, https://doi.org/10.1039/C7OB02459B
  4. one-pot synthesis of 2-bromo-6-hydroxybenzofurans vol.17, pp.8, 2019, https://doi.org/10.1039/C8OB03102A
  5. Synthesis of stemofurans C, L and T using organomanganese arene chemistry; Revised structure for stemofuran L vol.851, pp.None, 2014, https://doi.org/10.1016/j.jorganchem.2017.09.034