DOI QR코드

DOI QR Code

Nanocomposites Based on Polytetrafluoroethylene and Ultrahigh Molecular Weight Polyethylene: A Brief Review

  • Kirillina, Iu.V. (Department of Chemistry, North-Eastern Federal University) ;
  • Nikiforov, L.A. (Department of Chemistry, North-Eastern Federal University) ;
  • Okhlopkova, A.A. (Department of Chemistry, North-Eastern Federal University) ;
  • Sleptsova, S.A. (Department of Chemistry, North-Eastern Federal University) ;
  • Yoon, Cheonho (Department of Chemistry, Myongji University) ;
  • Cho, Jin-Ho (Department of Chemistry, Myongji University)
  • Received : 2014.06.12
  • Accepted : 2014.08.20
  • Published : 2014.12.20

Abstract

Deficiencies in wear and frost resistance as well as mechanical strength constitute the main causes of equipment failure under the harsh climatic conditions of the Earth's polar regions. To improve the properties of the materials used in this equipment, nanoparticle composites have been prepared from clays such as kaolinite, hectorite, and montmorillonite in combination with polytetrafluoroethylene (PTFE) or ultrahigh molecular weight polyethylene (UHMWPE). A number of techniques have been proposed to disperse silicate particles in PTFE or UHMWPE polymer matrices, and several successful processes have even been widely applied. Polymer nanocomposites that exhibit enhanced mechanical and thermal properties are promising materials for replacing metals and glass in the equipment intended for Arctic use. In this article, we will review PTFE- and UHMWPE-based layered silicate nanocomposites.

Keywords

References

  1. Polymers at Cryogenic Temperatures; Kalia, S., Fu, S.-Y., Eds.; Springer: 2013.
  2. Paul, D. R.; Robeson, L. M. Polym. 2008, 49, 3187. https://doi.org/10.1016/j.polymer.2008.04.017
  3. Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R. E. Compos. Mater. 2006, 40, 1511. https://doi.org/10.1177/0021998306067321
  4. Komarneni, S. J. Nanocomposites Mater. Chem. 1992, 2, 1219.
  5. Sherman, L. M. Plast. Technol. 1999, 45, 52.
  6. Westervelt, R. Chem. Week 1999, 161.
  7. Junges, F; Beauvalet, M. S.; Leal, B. C.; Casagrande, A. C. A.; Mota, F. F.; Mauler, R. S.; Casagrande, O. L. J. Braz. Chem. Soc. 2009, 20, 472. https://doi.org/10.1590/S0103-50532009000300010
  8. Popov, V. I.; Voskresenskii, V. A. Russ Chem. Rev. 1970, 39, 810. https://doi.org/10.1070/RC1970v039n09ABEH002028
  9. Teflon PTFE fluoropolymer resin: Properties handbook; DuPont Fluoroproducts: 1996.
  10. Kulkarni, P. V.; Chapkhhane, N. K. Intern. J. Eng. Adv. Technol. 2012, 1, 15.
  11. Biswas, S. K.; Vijayan, K. Wear 1992, 158, 193. https://doi.org/10.1016/0043-1648(92)90039-B
  12. Sui, G; Zhong, W. H.; Ren, X.; Wang, X. Q.; Yang, X. P. Mater. Chem. Phys. 2009, 115, 404. https://doi.org/10.1016/j.matchemphys.2008.12.016
  13. Harper, C. A.; Petrie, E. M. Plastics Materials and Processes: A Concise Encyclopedia; 2003.
  14. Khedkar, J.; Negulescu, I.; Meletis, E. I. Wear 2002, 252, 361. https://doi.org/10.1016/S0043-1648(01)00859-6
  15. Sperati, C. A.; Starkweather, H. W. Adv. Polym. Sci. 1961, 2, 465.
  16. U. S. Patent No. 2531396, 1950, National Lead Co.
  17. Greenland, D. J. J. Colloid Sci. 1963, 18, 647. https://doi.org/10.1016/0095-8522(63)90058-8
  18. Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Polym. Sci. A Polym. Chem. 1993, 31, 2493. https://doi.org/10.1002/pola.1993.080311009
  19. Pavlidou, S.; Papaspyrides, C. D. Prog. Polym. Sci. 2008, 33, 1119. https://doi.org/10.1016/j.progpolymsci.2008.07.008
  20. Okamoto, M. .Intern. Polym. Processing XXI 2006, 5, 487.
  21. Jpn. Kokai Patent Appl. No. 109998, 1976, Unitika Ltd.
  22. Fukushima, Y.; Inagaki, S. J. Inclusion Phenom. 1987, 5, 473. https://doi.org/10.1007/BF00664105
  23. Soleimani, N.; Khalili, S. M.; Farsani, R. E.; Nasab, Z. H. J. Reinf. Plast. Comp. 2012, 31, 967. https://doi.org/10.1177/0731684412450349
  24. Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  25. Krishnamoorti, R.; Yurekli, K. Curr. Opin. Colloid In. 2001, 6, 464. https://doi.org/10.1016/S1359-0294(01)00121-2
  26. Varghese, S.; Karger-Kocsis, J. J. Appl. Polym. Sci. 2004, 91, 813. https://doi.org/10.1002/app.13173
  27. Flammability studies of polymer layered silicate nanocomposites: Polyolefin, epoxy, and vinyl ester resins, In Chemistry and Technology of Polymer Additives; Malaika, S. A., Golovoy, A., Wilkie, C. A., Eds.; Blackwell Science Inc.: Malden, MA, 1999; Chapter 14, p 249.
  28. Gilman, J. W.; Kashiwagi, T.; Nyden, M. R.; Brown, J. E. T.; Jackson, C. L.; Lomakin, S. M.; Giannelis, E. P.; Manias, E.; Reynolds, R. C. In Crystal Structures of Clay Minerals and Their X-ray Identification; Brindley, G. W., Brown, G., Eds.; Mineralogical Society, London, 1980; p 249.
  29. Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1. https://doi.org/10.1016/S0927-796X(00)00012-7
  30. Morgan, A. B.; Harris, J. D. Polym. 2004, 45, 8695. https://doi.org/10.1016/j.polymer.2004.10.067
  31. Zhang, Y.-Q.; Lee, J.-H.; Jang, H.-J.; Nah, C.-W. Composites B 2004, 35, 133. https://doi.org/10.1016/S1359-8368(03)00068-4
  32. Park, S.-J.; Li, K.; Hong, S.-K. J. Ind. Eng. Chem. 2005, 11, 561.
  33. Brevnov, P. N. Nanocomposites Based on Polyethelene and Montmorillonite: Synthesis, Structure and Properties; Extended abstract of Ph.D. dissertation; Semenov Institute of Chemical: Moscow, 2008.
  34. Sleptsova, S. A.; Kirillina, Y. V. Vestnik NEFU 2013, 10, 18.
  35. Zhao, H.; Argoti, S. D.; Farrell, B P.; Shipp, D. A. J. Polym. Sci. A Polym. Chem. 2004, 42, 916. https://doi.org/10.1002/pola.11071
  36. Buznik, V. M. International Forum on High Technologies of XXI Century; Moscow, 2009.
  37. Blanchet, T. A.; Peng, Y.-L.; Nablo, S. V. Tribol. Lett. 1998, 4, 87. https://doi.org/10.1023/A:1019174331487
  38. Aderikha, V. N.; Shapovalov, V. A.; Pleskachevskii, Y. M. J. Friction Wear 2008, 29, 120. https://doi.org/10.3103/S1068366608020074
  39. Cheng, X.-H.; Xue, Y.-J.; Xie, C.-Y. Wear 2002, 253, 869. https://doi.org/10.1016/S0043-1648(02)00217-X
  40. Friedrich, K.; Schlarb, A. K. Tribology of Polymeric Nanocomposites: Friction and Wear of Bulk Materials and Coatings; Elsevier: Oxford, UK, 2008; Tribology and Interface Engineering Series, No. 55.
  41. Okhlopkova, A. A.; Vinogradov, A. V.; Pinchuk, L. S. Plastics Filled with Ultradispersed Inorganic Compounds; MPRI NAS B Press, Gomel, 1999.
  42. Vinogradov, A. V.; Okhlopkova, A. A. J. Friction Wear 1995, 16, 931.
  43. Vinogradov, A. V.; Tsielens, U. A.; Adrianova, O. A.; Demidova, Y. V.; Lobzov, S. N.; Yankovicha, D. R.; Stafetskii, L. P. In Mech. of Comp. Mater.; Jones, R. M., Ed.; Plenum Publishing Corporation: 1991; p 358.
  44. Okhlopkova, A. A.; Adrianova, O. A.; Popov, S. N. Yakutskii Filial Izdatel'stva SO RAN, 2003.
  45. Okhlopkova, A. A. Materialy, Tekhnologii, Instrumenty 1999, 4, 60.
  46. Li, F.; Hu, K.-A.; Li, J.-L.; Zhao, B.-Y. Wear 2001, 249, 877. https://doi.org/10.1016/S0043-1648(01)00816-X
  47. Sawyer, W. G.; Freudenberg, K. D.; Bhimaraj, P.; Schadler, L. S. Wear 2003, 254, 573. https://doi.org/10.1016/S0043-1648(03)00252-7
  48. Selyutin, G. E.; Gavrilov, Y. Y.; Voskresenskaya, E. N.; Zakharov, V. A.; Nikitin, V. E.; Poluboyarov, V. A. Chem. Sustain. Dev. 2010, 18, 301.
  49. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J. Mater. Res. 1993, 8, 1185. https://doi.org/10.1557/JMR.1993.1185
  50. Wang, K.; Chen, F.; Li, Z.; Fu, Q. Prog. Polym. Sci. 2014, 39, 891. https://doi.org/10.1016/j.progpolymsci.2013.05.012
  51. Pegoretti, A.; Dorigato, A.; Penati, A. eXPRESS Polym. Lett. 2007, 1, 123. https://doi.org/10.3144/expresspolymlett.2007.21
  52. Ke, Y. C.; Stroeve, P. Polymer-Layered Silicate and Silica Nanocomposites; Elsevier: 2005.
  53. Okhlopkova, A. A.; Nikiforov, L. A.; Gogoleva, O. V.; Borisova, R. V. Probl. Mater. Sci. 2013, 75, 48.
  54. Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  55. Kirillina, Y. V.; Sleptsova, S. A. Probl. Mater. Sci. 2013, 73, 127.
  56. Aderikha, V. N.; Shapovalov, V. A.; Pleskachevskii, Y. M. J. Friction Wear 2008, 29, 120. https://doi.org/10.3103/S1068366608020074

Cited by

  1. Supramolecular Structure and Mechanical Characteristics of Ultrahigh-Molecular-Weight Polyethylene-Inorganic Nanoparticle Nanocomposites vol.37, pp.4, 2016, https://doi.org/10.1002/bkcs.10700
  2. Reinforcement of Polyethylene Pipes with Modified Carbon Microfibers vol.60, pp.3, 2016, https://doi.org/10.5012/jkcs.2016.60.3.177
  3. Technology of liquid-phase compounding of ultra-high-molecular-weight polyethylene with nanoparticles of inorganic compounds under the action of ultrasonic vibrations vol.89, pp.9, 2016, https://doi.org/10.1134/S1070427216090135
  4. Structure and Friction Behavior of UHMWPE/Inorganic Nanoparticles vol.670, pp.1662-9795, 2015, https://doi.org/10.4028/www.scientific.net/KEM.670.69
  5. ChemInform Abstract: Nanocomposites Based on Polytetrafluoroethylene and Ultrahigh Molecular Weight Polyethylene: A Brief Review vol.46, pp.5, 2015, https://doi.org/10.1002/chin.201505256
  6. Surfactant Effects on Structure and Mechanical Properties of Ultrahigh-Molecular-Weight Polyethylene/Layered Silicate Composites vol.22, pp.12, 2017, https://doi.org/10.3390/molecules22122149
  7. A flexible rGO electrode: a new platform for the direct voltammetric detection of salicylic acid vol.12, pp.31, 2014, https://doi.org/10.1039/d0ay00112k
  8. The influence of several silicates on the fretting behavior of UHMWPE composites vol.137, pp.43, 2014, https://doi.org/10.1002/app.49335
  9. UHMWPE/CaSiO3 Nanocomposite: Mechanical and Tribological Properties vol.13, pp.4, 2014, https://doi.org/10.3390/polym13040570
  10. Influence of Carbon Fibers and Composite Technologies on the Properties of PCM Based on Polytetrafluoroethylene vol.12, pp.2, 2021, https://doi.org/10.1134/s2075113321020362
  11. Clay-Based Polymer Nanocomposites: Essential Work of Fracture vol.13, pp.15, 2014, https://doi.org/10.3390/polym13152399