DOI QR코드

DOI QR Code

Embedded Image Compression Scheme Using Rate-Distortion Optimized Block Coding of Wavelet Coefficients

웨이브렛 계수의 비트율-왜곡 최적화 기반 블록 부호화를 이용하는 임베디드 영상 압축 방법

  • Yang, Chang Mo (Smart Media Research Center, Korea Electronics Technology Institute) ;
  • Chung, Kwangsue (Department of Communications Engineering, Kwangwoon University)
  • Received : 2014.08.19
  • Accepted : 2014.11.11
  • Published : 2014.11.28

Abstract

In this paper, we propose a new embedded image compression scheme which uses rate-distortion optimized block coding of wavelet coefficients. Unlike to previous works in which set-partition or block-partition is performed according to the magnitude of wavelet coefficients, the proposed scheme achieves rate-distortion optimization by sorting wavelet coefficients or blocks according to their expected rate-distortion slope. At the same time, it performs the optimized block-partition coding using the expected rate-distortion slope of blocks. The proposed scheme also uses various relationship of wavelet coefficients for the entropy coding. Experimental results demonstrate that the proposed image compression scheme provides better overall performance than the existing embedded coding schemes such as SPIHT and EBCOT, in which the PSNR gains of the proposed scheme are about 0.11~1.16dB and -0.18~0.52dB, respectively.

본 논문에서는 웨이브렛 계수의 비트율-왜곡 최적화 기반 블록 부호화를 사용하는 새로운 임베디드 영상 압축방법을 제안한다. 웨이브렛 계수의 크기에 따라 셋분할 부호화나 블록분할 부호화를 수행하는 기존의 임베디드 부호화 방법들과는 달리, 제안한 방법에서는 웨이브렛 계수나 블록들을 비트율-왜곡비 기댓값에 따라 정렬함으로서 비트율-왜곡 최적화를 수행하는 동시에 비트율-왜곡비 기댓값을 이용하여 최적화된 블록분할 부호화를 수행한다. 또한 제안한 방법에서는 엔트로피 부호화를 위해 웨이브렛 계수들간에 존재하는 다양한 상관관계를 이용한다. 실험 결과는 제안한 영상 압축 방법이 기존의 임베디드 부호화 방법인 SPIHT 및 EBCOT와 비교하여 각각 0.11~1.16dB 및 -0.18~0.52dB의 PSNR 성능향상을 제공함으로써 평균적으로 우수한 성능을 제공함을 보여준다.

Keywords

References

  1. N. Kim, T. Song, W. Kim, and S. Pack, "A scalable video coding (SVC)-aware retransmission scheme for multimedia streaming in IEEE 802.11 WLANs," J. KICS, vol. 39, no. 2, pp. 95-101, Feb. 2014. https://doi.org/10.7840/kics.2014.39B.2.95
  2. J. Wang, J. Park, and Y. Kim, "Layer selective cooperation using superposition coding for reduction of expected distortion," J. KICS, vol. 37, no. 7, pp. 517-527, Jul. 2012. https://doi.org/10.7840/KICS.2012.37.7B.517
  3. J. Noh and M. Hong, "Fast integer-pel motion estimation based on statistical property for H.264/AVC," J. KICS, vol. 37, no. 8, pp. 669-678, Aug. 2012. https://doi.org/10.7840/kics.2012.37A.8.669
  4. A. A. Moinuddin, E. Khan, and M. Ghanbari, "Efficient algorithm for very low bit rate embedded image coding," IET Image Process., vol. 2. no. 2, pp. 59-71, Apr. 2008.
  5. J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3445-3462, Dec. 1993. https://doi.org/10.1109/78.258085
  6. A. Said and W. A. Pearlman, "A new, fast, and efficient image codec based on set partitioning in hierarchical trees," IEEE Trans. Circuits and Syst. for Video Tech., vol. 6, no. 3, pp. 243-250, Jun. 1996. https://doi.org/10.1109/76.499834
  7. H. Zhu, C. Xiu, and D. Yang, "An improved SPIHT algorithm based on wavelet coefficient blocks for image coding," Int. Conf. Comput. Appl. Syst. Modeling, pp. 646-649, Taiyuan, China, Oct. 2010.
  8. W. A. Pearlman and A. Said, "Set partition coding: part I of set partition coding and image wavelet coding systems," Foundations and Trends in Signal Process., vol. 2, no. 2, pp. 95-180, Nov. 2008.
  9. A. Islam and W. A. Pearlman, "An embedded and efficient low-complexity hierarchical image coder," Visual Comm. Image Process., pp. 294-305, San Jose, USA, Jan. 1999.
  10. W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, "Efficient, low-complexity image coding with a set-partitioning embedded block coder," IEEE Trans. Circuits and Syst. for Video Tech., vol. 14, no. 11, pp. 1219-1235, Nov. 2004. https://doi.org/10.1109/TCSVT.2004.835150
  11. R. Ngadiran, S. Boussakta, A. Bouridane, and F. Khelifi, "Exploiting chrominance planes similarity on listless quadtree coders," IET Image Process., vol. 7, no. 6, pp. 575-585, Aug. 2013. https://doi.org/10.1049/iet-ipr.2012.0016
  12. Z. Xiong, K. Ramchandran, and M. T. Orchard, "Space-frequency quantization for wavelet image coding," IEEE Trans. Image Process., vol. 6, no. 5, pp. 677-693, May 1997. https://doi.org/10.1109/83.568925
  13. J. Li and S. Lei, "An embedded still image coder with rate-distortion optimization," IEEE Trans. Image Process., vol. 8, no. 7, pp. 913-924, Jul. 1999. https://doi.org/10.1109/83.772232
  14. D. Taubman, "High performance scalable image compression with EBCOT," IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158-1170, Jul. 2000. https://doi.org/10.1109/83.847830
  15. S. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989. https://doi.org/10.1109/34.192463
  16. M. Omidyeganeh, S. Ghaemmaghami, and S. Shirmohammadi, "Application of 3D-wavelet statistics to video analysis," Multimedia Tools Appl., vol. 65, no. 3, pp 441-465, Aug. 2013. https://doi.org/10.1007/s11042-012-1012-5
  17. R. W. Buccigrossi and E. P. Simoncelli, "Image compression via joint statistical characterization in the wavelet domain," IEEE Trans. Image Process., vol. 8, no. 12, pp 1688-1701, Dec. 1999. https://doi.org/10.1109/83.806616
  18. F. Auli-Llinas, "General embedded quantization for wavelet-based lossy image coding," IEEE Trans. Signal Process., vol. 61, no. 6, pp. 1561-1574, Mar. 2013. https://doi.org/10.1109/TSP.2012.2236323
  19. M. Silveira, J. C. Nascimento, J. S. Marques, A. R. S. Marcal, T. Mendonca, S. Yamauchi, J. Maeda, and J. Rozeira, "Comparison of segmentation methods for melanoma diagnosis in dermoscopy images," IEEE J. Sel. Topics Signal Process., vol. 3, no. 1, pp. 35-45, Feb. 2009. https://doi.org/10.1109/JSTSP.2008.2011119
  20. S. Forchhammer and X. Wu, "Context quantization by minimum adaptive code length," IEEE Int. Symp. Inf. Theory, pp. 246-250, Nice, France, Jun. 2007.

Cited by

  1. Low-Complexity Sub-Pixel Motion Estimation Utilizing Shifting Matrix in Transform Domain vol.11, pp.4, 2016, https://doi.org/10.5370/JEET.2016.11.4.1020