DOI QR코드

DOI QR Code

Efficient Spectrum Sensing Based on Evolutionary Game Theory in Cognitive Radio Networks

인지무선 네트워크에서 진화게임을 이용한 효율적인 협력 스펙트럼 센싱 연구

  • Received : 2014.11.03
  • Accepted : 2014.11.18
  • Published : 2014.11.28

Abstract

In cognitive radio technology, secondary users can determine the absence of PU by periodic sensing operation and cooperative sensing between SUs yields a significant sensing performance improvement. However, there exists a trade off between the gains in terms of probability of detection of the primary users and the costs of false alarm probability. Therefore, the cooperation group must maintain the suitable size. And secondary users should sense not only the currently using channels and but also other candidates channel to switch in accordance with sudden appearance of the primary user. In this paper, we propose an effective group cooperative sensing algorithm in distributed network situations that is considering both of inband and outband sensing using evolutionary game theory. We derived that the strategy group of secondary users converges to an ESS(Evolutionary sable state). Using a learning algorithm, each secondary user can converge to the ESS without the exchange of information to each other.

인지무선 기술에서 주사용자의 보호를 위해 부사용자들은 주기적인 센싱 수행을 통해 주사용자의 부재를 판단하게 되고, 부사용자들 간의 협력 센싱을 통해서 향상된 센싱 결과를 얻을 수 있다. 하지만 주사용자에 대한 검출 확률과 오경보 확률에 대한 비용의 트레이드 오프가 존재하기 때문에, 적절한 협력 집단의 규모 유지가 필요하다. 또한 부사용자들은 자신이 현재 사용중인 주파수 대역은 물론 인가 사용자가 나타났을 시에 스위칭 해야 할 후보 채널에 대한 주기적인 센싱이 요구된다. 본 논문에서는 진화게임이론을 이용하여 분산상황 에서의 인밴드 센싱과 아웃밴드 센싱을 고려한 효율적인 그룹 협력 센싱 방법을 제안한다. 진화 게임을 통해서 협력센싱의 전략을 택한 부사용자들의 집단이 ESS(Evolutionary Stable State)상태로 수렴함을 관찰하였고, 학습 알고리즘을 통해 서로간의 정보교환 없이 평형상태로 수렴함을 관찰하였다.

Keywords

References

  1. Federal Communications Commission Spectrum Policy Task Force, FCC Report of the Spectrum Efficiency Working Group, Nov. 2002.
  2. J. Mitola and G. Q. Jr. Maguire, "Cognitive radio: Making software radios more personal," IEEE Trans. Commun. Soc., vol. 6, no. 4, pp. 13-18, Aug. 1999.
  3. S. Haykin, "Cognitive radio: Brain- empowered wireless communications," IEEE J. Sel. Area. Commun., vol. 23. no. 2, pp. 201-220, Feb. 2005. https://doi.org/10.1109/JSAC.2004.839380
  4. I. F. Akyildiz, "Next generation/dynamic spectrum access/cognitive radio wireless network," J. Comput. Netw., vol. 50, no. 13, pp. 2127-2159, Sept. 2006. https://doi.org/10.1016/j.comnet.2006.05.001
  5. A. Ghasemi, "Collaborative spectrum sensing for opportunistic access in fading environments," 1st IEEE Int. Symp. New Frontiers in Dynamic Spectrum Access Netwo.(DySPAN 2005), vol. 8, no. 11, pp. 131-136, Nov. 2005.
  6. A.W. Edwards, "The genetical theory of natural selection," J. Genetics 154, pp. 1419-1426, Apr. 2000.
  7. Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjorungnes, Game Theory in Wireless and Communication Networks, 1st Ed., Cambridge University Press, 2012.
  8. K. Zhu, "Optimal bandwidth allocation with dynamic service selection in heterogeneous wireless networks," IEEE, Global Telecommun. Conf. (GLOBECOM 2010), pp. 1-5, Dec. 2010.
  9. E. Altman, "An evolutionary game approach for the design of congestion control protocols in wireless networks," 6th Int. Symp. Modeling and Optimization in Mobile, Ad Hoc, and Wirel. Netw. Workshops(WiOPT 2008), pp. 547-552, Apr. 2008.
  10. K. Kim, "PG-Sensing: Progressive out-of-band spectrum sensing for cognitive radio," IEEE, Global Telecommun. Conf. (GLOBECOM 2011), pp. 1-5, Dec. 2011.
  11. Y.-C. Liang, "Sensing-throughput tradeoff for cognitive radio networks," IEEE Trans. Wirel. Commun., vol. 7, no. 4, pp. 1326-1337, Apr. 2008. https://doi.org/10.1109/TWC.2008.060869
  12. H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd Ed., NY: Springer-Verlag, 1994.
  13. J. Proakis, Digital Communications, 4th Ed., NY: McGraw-Hill, 2001.
  14. W. Zhang and K. B. Letaief, "Cooperative spectrum sensing with transmit and relay diversity in cognitive networks," IEEE Trans. Wirel. Commun., vol. 7, pp. 4761-4766, Dec. 2008. https://doi.org/10.1109/T-WC.2008.060857
  15. W. Saad, "Coalitional games for distributed collaborative spectrum sensing in cognitive radio network," IEEE INFOCOM, pp. 2114-2122, Apr. 2009.
  16. S. Boyd and L. Vandenberghe, Convex Optimization, New York, USA: Cambridge University Press, Sept. 2004.