DOI QR코드

DOI QR Code

해양 인지 무선 네트워크에서 협력적 센싱 기법의 성능 평가

Performance Evaluation of Cooperative Spectrum Sensing in Maritime Cognitive Radio Networks

  • Nam, Yujin (Department of Electronic Engineering, Sogang University) ;
  • Lee, Yundong ;
  • Lee, Seong Ro (Mokpo National University Department of Information & Electronics Engineering) ;
  • Jeong, Min-A (Mokpo National University Department of Computer Engineering) ;
  • So, Jaewoo (Department of Electronic Engineering, Sogang University)
  • 투고 : 2014.10.08
  • 심사 : 2014.11.17
  • 발행 : 2014.11.28

초록

본 논문은 해양 인지 무선 네트워크에서 제한된 피드백을 가지는 협력적 센싱 알고리듬을 제안하고, 제안하는 알고리듬을 기반으로 협력적 센싱 알고리듬의 성능을 평가한다. 제안하는 협력적 센싱 기법은 선박들이 사용 가능한 피드백 양이 제한된 환경에서 차순위 선박들이 문턱값을 기반으로 퓨전 선박에 피드백 여부를 결정하고, 퓨전선박은 수신한 신호를 기반으로 채널 사용 가능 여부를 판단한다. 제안하는 협력적 센싱 기법은 피드백 오버헤드 감소를 목적으로 한다. 해양 인지 무선 네트워크 환경에서 문턱값 기반 협력적 센싱 알고리듬을 사용할 때 센싱 기법의 성능을 검출 확률과 차순위 선박 수에 따른 피드백 선박 수의 측면에서 평가한다. 모의실험을 통하여 제안하는 협력적 센싱 기법은 검출 확률이 다소 감소하나, 피드백 양이 크게 감소하는 것을 확인하였다.

This paper proposes a cooperative spectrum sensing algorithm in a maritime cognitive radio network and evaluates the performance of proposed algorithm. In the proposed algorithm, the secondary ships decide whether to transmit the feedback information or not on the basis of the threshold when the number of available feedback information of the ships is limited. The fusion ship detects whether the channel is available or not on the basis of the feedback information. This paper evaluates the proposed algorithm in terms of the detection probability and the number of secondary ships that are fed back in the maritime cognitive radio network. The simulation results show the proposed algorithm significantly reduces the feedback overhead even though the detection probability is somewhat declined.

키워드

참고문헌

  1. S. Haykin, "Cognitive radio: Brainempowered wireless communications," IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005. https://doi.org/10.1109/JSAC.2004.839380
  2. H. Cho, Y. Lee, S. Yun, S, Bae, and K. Lee, "An order statistic-based spectrum sensing scheme for cooperative cognitive radio networks in non-gaussian noise environments," J. KICS, vol. 37, no. 11, pp. 943-951, Nov. 2012. https://doi.org/10.7840/kics.2012.37A.11.943
  3. R. A. Roshid, N. M. Aripin, N. Fisal, S. H. S. Ariffin, and S. K. S. Yusof, "Integration of cooperative sensing and transmission," IEEE Trans. Veh. Technol. Mag., vol. 5, no. 3, pp. 46-53, Sept. 2010. https://doi.org/10.1109/MVT.2010.937849
  4. G. Ganesan and Y. Li, "Agility improvement through cooperative diversity in cognitive radio," in Proc. Global Telecommun., vol. 5, pp. 2505-2509, Nov. 2005.
  5. A. Ghasemi and E. S. Sousa, "Collaborative spectrum sensing for opportunistic access in fading environments," in Proc. IEEE Int. Symp. New Frontiers DySPAN, pp. 131-136, Nov. 2005.
  6. F. Suratman and A. Zoubir, "Collaborative spectrum sensing in cognitive radio using hard decision combining with quality information," in Proc. lEEE Statistical Sig. Process. Workshop (SSP), pp. 377-380, Jun. 2011.
  7. W. Han, J. Li, Z. Li, J. Si, and Y. Zhang, "Efficient soft decision fusion rule in cooperative spectrum sensing," IEEE Trans. Sig. Process., vol. 61, no. 8, pp. 1931-1943, Apr. 2013. https://doi.org/10.1109/TSP.2013.2245659
  8. D. Oh, H. Lee, and Y. Lee, "Linear hard decision combining for cooperative spectrum sensing in cognitive radio systems," in Proc. IEEE VTC, pp. 1-5, Sept. 2010.
  9. R. Choi and Y. Byeon, "Or-rule based cooperative spectrum sensing scheme considering reporting error in cognitive radio networks," J. KICS, vol. 29, no. 1, pp. 19-27, Jan. 2010.
  10. M. Derakhshani and T. Le-Ngoc, "Aggregate interference and capacity-outage analysis in a cognitive radio network," IEEE Trans. Veh. Technol., vol. 6, no. 1, pp. 196-207, Jan. 2012.
  11. K. Choi, E. Hossain, and D. Kim, "Cooperative spectrum sensing under a random geometric primary user network model," IEEE Trans. Wirel. Commun., vol. 10, no. 6, pp. 1932-1944, Jun. 2010.
  12. O. Biggelaar, J. Dricot, P. Doncker, and F. Horlin, "New combination scheme for cooperative spectrum sensing under imperfect control channels," in Proc. IEEE Int. Symp. Pers., Indoor and Mob. Radio Commun. (PIMRC), pp. 968-973, Sept. 2012.
  13. S. Althunibat, S. Narayanan, M. Renzo, and F. Granelli, "On the energy consumption of the decision-fusion rules in cognitive radio networks," in Proc. IEEE Int. Workshop on Comput. Aided Modeling and Design of Commun. Links and Netw. (CAMAD), pp. 125-129, Sept. 2012.
  14. G. Li, A. Cano, and S. Zhu, "High-diversity cooperative spectrum sensing in cognitive radio networks," in Proc. IEEE Globecom, pp. 1-5, Dec. 2010.
  15. Q. Qin, Z. Zhimin, and G. Caili, "A study of data fusion and decision algorithms based on cooperative spectrum sensing," in Proc. Int. Conf. Fuzzy Syst. and Knowledge Discovery, pp. 76-80, Aug. 2009.
  16. S. Lee and J. Kim, "Optimal hard decision for cooperative spectrum sensing in cognitive radio systems," J. Korean Inst. Electromagn. Eng. Sci., vol. 22, no. 4, pp. 416-422, Apr. 2011. https://doi.org/10.5515/KJKIEES.2011.22.4.416
  17. J. Ma and Y. Li, "Soft combination and detection for cooperative spectrum sensing in cognitive radio network," in Proc. IEEE Globecom, pp. 3139-3143, Nov. 2007.
  18. N. Kim, "A cooperative spectrum sensing and dynamic spectrum decision methods for heterogeneous cognitive radio networks," J. KICS, vol. 37, no. 7, pp. 560-568, Jul. 2012. https://doi.org/10.7840/KICS.2012.37.7A.560
  19. P. Kaligineedi and V. Bhargava, "Sensor allocation and quantization schemes for multi-band cognitive radio cooperative sensing system," IEEE Trans. Wirel. Commun., vol. 10, no. 1, Jan. 2011.
  20. P. Kaligineedi and V. Bhargava, "Distributed detection of primary signals in fading channels for cognitive radio networks," in Proc. IEEE Globecom, pp. 1-5, Nov. 2008.
  21. N. Han and H. Li, "Cooperative spectrum sensing with location information," IEEE Trans. Veh. Technol., vol. 61, no. 7, pp. 3015-3024, Sept. 2012. https://doi.org/10.1109/TVT.2012.2202410