DOI QR코드

DOI QR Code

선박 내 유선망에서 차등화 서비스 지원을 위한 패킷 폐기 기술

Packet Drop Technique for Differentiated Services in Wired Ship Area Networks

  • Lee, Seong Ro (Mokpo National University Department of Electronics Engineering) ;
  • Kwon, Jang-Woo (Inha University Department of Computer Science & Information Technology) ;
  • Jeong, Min-A (Mokpo National University Department of Computer Engineering) ;
  • Hur, Kyeong (Gyeongin National University of Education Department of Computer Education)
  • 투고 : 2014.10.08
  • 심사 : 2014.11.17
  • 발행 : 2014.11.28

초록

선내 유선 네트워크에서는 선내의 각종 센서와 제어기를 자율적으로 구성관리하고 원격제어를 제공하는 기능을 수행한다. 이러한 선박 내 유선 통신망에서 차등화서비스가 지원된다면, 우선순위가 높은 실시간 플로우는 최소전송률을 보장 받고 빠르게 전송되어, 지능적인 선박 통신망을 구현할 수 있다. 본 논문에서는 이러한 선박 내 유선 네트워크에서 차등화 서비스를 지원하기 위해, 기존 RIO (RED In and Out) 방식보다 우수한 패킷 폐기 기술을 제안한다. 제안한 패킷 폐기기술은 개별 플로우별로 관리하지 않고 특정한 기준에 따라 몇 개의 플로우 그룹으로 나누어, 그룹별 관리를 통해서 동일 클래스 내 플로우 간 공평성을 제공한다. 시뮬레이션 결과에서는 RIO 방식보다 링크 이용률은 조금 감소하나, 다중 병목 구간을 경유하는 플로우들이 RIO 방식보다 더 많은 전송률을 보장 받음을 알 수 있다.

An wired ship area network has functionality of remote control and autonomous management of various sensors and instruments embedded or boarded in a ship. For such environment, the DiffServ (Differentiated Services) realizes that the high-speed real-time flow with the higher priority has the guaranteed minimum data rate and is delivered faster. As a result of this DiffServ effect, the intelligent Ship Area Networks can be implemented. In this paper, an packet drop technique is proposed to outperform the previous RIO (RED In and Out) drop mechanism for DiffServ in ship area networks. the proposed packet drop technique does not manage the individual flows and divides them into several flow groups according to a criterion. And it guarantees the fairness between individual flows in the same QoS class through the group-based control. In simulation results of the proposed packet drop technique, the link utilization decreases than RIO. But it guarantees more data rates to DiffServ flows passing multiple bottleneck links.

키워드

참고문헌

  1. S. Park and S. R. Lee, "Marine disasters prediction system model using marine environment monitoring," J. KICS, vol. 38C, no. 3, pp. 263-270, Mar. 2013. https://doi.org/10.7840/kics.2013.38C.3.263
  2. S.-H. Lee, J.-H. Kim, K.-D. Moon, K. Lee, and J. H. Park, "Performance analysis on integrated ship area network," J. KICS, vol. 38C, no. 3, pp. 247-253, Mar. 2013. https://doi.org/10.7840/kics.2013.38C.3.247
  3. K.-I. Kim, "Adjusting transmission power for real-time communications in wireless sensor networks," J. Inf. Commun. Convergence Eng., vol. 10, no. 1, pp. 21-26, Mar. 2012. https://doi.org/10.6109/jicce.2012.10.1.021
  4. O.-S. Park and J.-M. Ahn, "Implementation algorithms and performance analysis of maritime VHF data system based on filtered multi-tone modulation," J. KICS, vol. 38C, no. 3, pp. 254-262, Mar. 2013. https://doi.org/10.7840/kics.2013.38C.3.254
  5. R. Barden, D. Clark, and S. Shenker, "Integrated services in the internet architecture: An overview," Internet RFC 1633, Jun. 1994.
  6. S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An architecture for differentiated services," Internet RFC 2475, Dec. 1998.
  7. J. Wroclawski, "The use of RSVP with IETF integrated services," Internet RFC 2210, Sept. 1997.
  8. X. Xiao and L. M. Ni, "Internet QoS: The big picture," IEEE Network Mag., pp. 8-18, Mar./Apr. 1999.
  9. D. Clark and W. Fang, "Explicit allocation of best effort packet delivery service," IEEE / ACM Trans. Netw., vol. 6, no. 4, pp. 362-373, Aug. 1998. https://doi.org/10.1109/90.720870
  10. W. Feng, et. al., "Understanding and improving TCP performance over networks with minimum rate guarantee," IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 173-187, Apr. 1999. https://doi.org/10.1109/90.769766
  11. UCB/LBNL/VINT, "Network simulator-ns2," http://www-mash.cs.berkeley.edu/ns, 1998.