DOI QR코드

DOI QR Code

Design Method for Integrated Modular Avionics System Architecture

Integrated Modular Avionics 컴퓨터 아키텍처의 설계방안

  • Received : 2014.08.04
  • Accepted : 2014.10.10
  • Published : 2014.11.28

Abstract

In this paper, we survey the works related to the system architecture of avionics and extract characteristics from the related works. On the basis of the investigation, we propose an integrated modular avionics (IMA) architecture that can be used for current avionic upgrades and future avionic developments based on the IMA Core system. To verify the feasibility of the proposed IMA architecture, we have developed the prototype of the IMA Core system that consists of both the common hardware module and the IMA software. It was verified that the developed prototype with the common hardware module contributes to the improvement of maintainability because it can save the time and expenses for the development and can reduce the number of types of hardware modules when compared with Federated architecture. It was also confirmed that the developed prototype can save not only overall system weight, size, and power consumption but also the number of hardware types because the IMA software can support the integrated processing where the single processing hardware module can process multiple software applications.

본 논문에서는 항공전자 아키텍처 발전 동향을 조사하고 최신 항공전자 아키텍처 주요 특징을 파악한다. 이를 토대로 향후 국내 항공기 항공전자 성능개량과 미래 항공기 개발에 적용할 수 있는 통합 모듈형 항공전자(IMA: Integrated Modular Avionics) 시스템 아키텍처를 IMA Core 시스템 중심으로 제안한다. 제안된 아키텍처 시스템의 구현 가능성을 판단하기 위해 공통하드웨어 모듈과 IMA 소프트웨어를 적용한 IMA Core 시스템 프로토타입(Prototype)을 개발하였다. 본 프로토타입 개발을 통해 IMA 시스템 제작 시, 공통하드웨어 모듈을 적용하면 기존방식에 비해 시간과 비용을 줄이고 시스템 구성 하드웨어 모듈의 종류를 감소시켜 성능개량 및 정비성 향상에 기여함을 확인하였다. 또한, IMA 소프트웨어에서 제공하는 통합처리 기능을 사용할 경우, 여러 항공전자 소프트웨어 기능을 단일 프로세싱 모듈에서 처리함으로써 필요 하드웨어 수를 감소시키고 시스템 무게, 부피, 전력소모를 감소시킬 수 있음을 확인하였다.

Keywords

References

  1. L. M. Nicolai, "Technical Evaluation Report: Aircraft Update Programs. The Economical Alternative," in Proc. RTO SCI Symp. Aircraft Update Program, pp. TA1-TA6, 1999.
  2. L. C. C. Pinney, "Joint Advanced Strike Technology Program Avionics Architecture Definition," JAST Avionics, Aug. 1994.
  3. J. M. Wu and J. Y. Wang, "An Approach Based on Models to the Design and Development for Integrated Modular Avionics," in Proc. 14th AIAA Aviation Technol., Integration, and Operations Conf., Atlanta, USA, Jun. 2014.
  4. J. Y. Ko, H. J. Park, and J. K, Son, "A Study of Integrated Modular Avionics Development Trends," in Proc. KSAS Conf.-Fall 2011, pp. 1753-1757, YongPyong, Korea, Nov. 2011.
  5. R. Garside and F. J. Fighetti, "Integrating Modular Avionics: A New Role Emerges," IEEE Aerospace and Electronic Syst. Mag., vol. 24, no. 3, pp. 31-34, Mar. 2009.
  6. H. J. Park, "Study on Design Method for Integrated Modular Avionics Computer Architecture," Master Degree Thesis, Electric engineering, Ajou University, Feb. 2013.
  7. L. C. C. Pinney, "Joint Advanced Strike Technology Program Avionics Architecture Definition Appendicies," JAST Avionics, Aug. 1994.
  8. L. C. C. Pinney, "Joint Advanced Strike Technology Program Avionics Architecture Definition Issues/Decisions/Rational Document," JAST Avionics, Aug. 1994.
  9. Airlines Electronic Engineering Committee, "ARINC Specification 653," ARINC, 2005.
  10. ARINC 653 Standard, Avionics Application Software Standard Interface, 2006.
  11. Military Agency for Standardization(MAS), STANAG4626 Modular and Open Avionics Architectures, NATO, 2004.
  12. R. L. Alena, "Communications for Integrated Modular Avionics," in Proc. IEEE Aerospace Conf., pp. 1-18, Big Sky, USA, Mar. 2007.
  13. ARINC 664 Standard, Aircraft Data Network, 2002.
  14. Airbus France, AFDX End System Detailed Functional specification, 2003.