DOI QR코드

DOI QR Code

군 MicroWave 통신 환경에서의 링크 거리를 고려한 전송 성능 향상 기법

Improving Transmission in Association with the Distance for Military Microwave Communications

  • Youn, Jong Taek (LIG NEX1 Co.,Ltd. / NCW Engineering, Ajou University) ;
  • Lim, Young Gap (NCW Engineering, Ajou University) ;
  • Kim, Young Ho (Korea Institute for Defence Analyses / NCW Engineering, Ajou University)
  • 투고 : 2014.08.30
  • 심사 : 2014.11.07
  • 발행 : 2014.11.28

초록

군의 MicroWave 통신 환경에서 회선 설계를 위해 링크거리, 가용도, 전송용량은 중요한 요소이다. 현재 고정용 변조방식으로 운용, 미래 전송용량 증대가 가능한 변조방식으로 진화될 예정이다. 링크 거리에 따라 페이딩 발생확률의 증가로 장거리의 경우 고신뢰의 전송품질을 지속적으로 보장하기 어려울 수 있다. 대용량 전송을 위한 변조방식의 경우 장거리가 될수록 링크버짓에서 페이드 마진의 저하로 가용도가 감소되어 QoS 보장에 있어 제한사항이 발생할 수 있다. 본 논문에서는 군 MicroWave 무선 링크에서의 링크거리를 고려한 대역폭 가변 할당 및 우선순위 전송 용량 비율 설정을 이용한 우선순위 전송 기법을 통해 무선 전송 성능 향상기법을 제안하고 링크 설계를 위한 채널 전송 용량 산출방안을 제시한다.

In Military MicroWave communication, the distance of link, availability, transmission capacity is the important point in order to design the circuit. Currently, operated by fixed modulation, in the future it will be evolved to the modulation techniques enabled to increase the transmission capacity. It would be hard to consistently guarantee the transmission quality of the high-availability because the occurrence probability of fading increase in terms of the link distance for the case of the long distance. In the case of the modulation techniques for the transmission of high-capacity, as the distance is long, a falling-off in the fade margin from the link budget analysis cause the decrease in the availability. It is difficult to provide QoS guaranteed connection. In this paper, we propose the performance improvement technique of transmission by the variable allocation of the bandwidth and the higher priority transmission technique using setting the ratio of the higher priority capacity in association with the distance of link. Also we suggest the alternative of the calculation for channel transmission capacity to design the circuit.

키워드

참고문헌

  1. B. L. Agba, R. Morin, and G. Bergeron, "Comparison of microwave links prediction methods: Barnett-vigants vs. ITU models," in Proc. PIERS, pp. 788-792, Xi'an, China, Mar. 2010.
  2. G. Boiocchi, P. D. Prisco, A. Lahrech, P. Lopez, M. Moretto, and P. Volpato, "Nextgeneration microwave packet radio: Characteristics and evolution areas to support new scenarios in wireless backhauling," J. Bell Labs Tech., vol. 18, pp. 143-157, 2013. https://doi.org/10.1002/bltj.21610
  3. T.-L. Sheu and K.-C. Huang, "Adaptive bandwidth allocation model for multiple traffic classes in IEEE 802.16 worldwide interoperability for microwave access networks," IET Commun., 2011, vol. 5, no. 1, pp. 90-98, Apr. 2010. https://doi.org/10.1049/iet-com.2010.0005
  4. H.-C. Lee, J.-Y. Chen, Y.-D. Chen, and K.-H. Lin, "Modified priority scheduling algorithm with link adaptation for wireless network," 2004 IEEE 59th Veh. Technol. Conf. (VETECS), vol. 5, pp. 2539-2542, May 2004.
  5. Y. Wang, S. Chan, M. Zukerman, R. J. Harris, "Priority-based fair scheduling for multimedia WiMAX uplink traffic," IEEE Int. Conf., Commun., 2008(ICC '08), pp. 301-305, Beijing, May 2008.
  6. Recommendation ITU-R F.1191-3, Necessary and occupied bandwidths and unwanted emissions of digital fixed service systems, ANNEX1. section 2.1, pp. 7-8, 2011.
  7. Dakeda, Anand., Microwave Equipment Technical Document, Fujitsu Wireless Systems Ltd., Feb. 2014.
  8. D.-C. Kim and K.-S. Chung, "A priority-based adaptive data transmission scheme for improving the media quality in broadband wireless networks," J. KIISE, vol. 38, no. 2, pp. 127-137, Apr. 2011.