DOI QR코드

DOI QR Code

New Equivalent Circuit Model for Interpreting Spectral Induced Polarization Anomalous Data

광대역유도분극 이상 자료의 해석을 위한 새로운 등가회로 모델

  • Shin, Seungwook (Exploration Geophysics and Mining Engineering Dept., Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Samgyu (Exploration Geophysics and Mining Engineering Dept., Korea Institute of Geoscience and Mineral Resources) ;
  • Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University)
  • 신승욱 (한국지질자원연구원 탐사개발연구실) ;
  • 박삼규 (한국지질자원연구원 탐사개발연구실) ;
  • 신동복 (공주대학교 지질환경과학과)
  • Received : 2014.10.28
  • Accepted : 2014.11.25
  • Published : 2014.11.30

Abstract

Spectral induced polarization (SIP) is a useful technique, which uses electrochemical properties, for exploration of metallic sulfide minerals. Equivalent circuit analysis is commonly conducted to calculate IP parameters from SIP data. An equivalent circuit model, which indicates the SIP response of rock, has a non-uniqueness problem. For this reason, it is very important to select the proper model for accurate analysis. Thus, this study focused on suggesting a new model, which suitable for the analysis of an anomalous SIP response, such as ore. A suitability of the new model was verified by comparing it with the existing Dias model and Cole-Cole models. Analysis errors were represented as a normalized root mean square error (NRMSE). The analysis result using the Dias model was the NRMSE of 10.50% and was the NRMSE using the Cole-Cole model of 17.03%. Howerver, because the NRMSE of the new model is 0.87%, it is considered that the new model is more useful for analyzing the anomalous SIP data than other models.

지층의 전기화학적인 물성을 이용한 광대역유도분극(SIP) 탐사는 황화광물을 포함한 금속광물탐사에 유용한 기술이다. 탐사자료로부터 IP 물성을 계산하기 위해서는 등가회로 분석을 수행한다. 분석에 사용되는 암석의 SIP 반응을 고려한 등가회로 모델은 해의 비유일성이라는 문제를 가지기 때문에 정확한 분석을 위해 적절한 모델을 설정하는 것이 매우 중요하다. 따라서 이 연구는 SIP 이상반응을 나타내는 광석의 분석에 적합한 새로운 모델을 제안하고자 하였다. 이 모델은 기존의 Dias model과 Cole-Cole model의 비교를 통하여 적합성을 검증하였다. 그 결과, Dias model과 Cole-Cole model을 이용한 분석 결과의 NRMSE 오차는 각각 10.05%와 17.03%를 보였다. 하지만 제안한 새로운 모델의 NRMSE 오차는 0.87%로 상당히 낮았기 때문에 다른 모델보다 SIP 이상 자료의 등가회로 분석에 유용하고 판단하였다.

Keywords

References

  1. Bieniawski, Z. T., and Bernede, M. J., 1979, Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(2), 138-140.
  2. Dias, C. A., 1972, Analytical model for a polarizable medium at radio and lower frequencies, Journal of Geophysical Research, 77(26), 4945-4956. https://doi.org/10.1029/JB077i026p04945
  3. Dias, C. A., 2000, Developments in a model to describe lowfrequency electrical polarization of rocks, Geophysics, 65(2), 437-451. https://doi.org/10.1190/1.1444738
  4. Jougnot, D., Ghorbani, A., Revil, A., Leroy, P., and Cosenza, P., 2010, Spectral induced polarization of partially saturated clay-rocks: a mechanistic approach, Geophysical Journal International, 180(1), 210-224. https://doi.org/10.1111/j.1365-246X.2009.04426.x
  5. Katz, E., and Willner, I., 2003, Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNASensors, and Enzyme Biosensors, Electroanalysis, 15(11), 913-947. https://doi.org/10.1002/elan.200390114
  6. Macdonald, J. R., and Johnson, W. B., 2005, Fundamentals of Impedance Spectroscopy, Impedance Spectroscopy, John Wiley & Sons, Inc., 1-26.
  7. Nguyen, P. T., and Amiri, O., 2014, Study of electrical double layer effect on chloride transport in unsaturated concrete, Construction and Building Materials, 50, 492-498. https://doi.org/10.1016/j.conbuildmat.2013.09.013
  8. Niranjan, U., 2004, Simultaneous storage of medical images in the spatial and frequency domain: A comparative study, Biomedical Engineering Online, 3(17), 1-10. https://doi.org/10.1186/1475-925X-3-1
  9. Park, S., and Matsui, T., 1998, Basic study on resistivity of rocks, Butsuri Tansa (Geophysical Exploration), 51(3), 201-209 (in Japanese).
  10. Pelton, W., Ward, S., Hallof, P., Sill, W., and Nelson, P., 1978, Mineral discrimination and removal of inductive coupling with multifrequency, Geophysics, 43(3), 588-609. https://doi.org/10.1190/1.1440839
  11. Revil, A., and Florsch, N., 2010, Determination of permeability from spectral induced polarization in granular media, Geophysical Journal International, 181(3), 1480-1498.
  12. Schiffbauer, J., and Yossifon, G., 2014, Influence of electricdouble-layer structure on the transient response of nanochannels, Physical Review E, 89(5), 053015. https://doi.org/10.1103/PhysRevE.89.053015
  13. Seigel, H., Nabighian, M., Parasnis, D., and Vozoff, K., 2007, The early history of the induced polarization method, The Leading Edge, 26(3), 312-321. https://doi.org/10.1190/1.2715054
  14. Vanhala, H., and Peltoniemi, M., 1992, Spectral IP studies of Finnish ore prospects, Geophysics, 57(12), 1545-1555. https://doi.org/10.1190/1.1443222
  15. Wynn, J. C., and Zonge, K. L., 1975, EM coupling, its intrinsic value, its removal and the cultural coupling problem, Geophysics, 40(5), 831-850. https://doi.org/10.1190/1.1440571
  16. Zonge, K., and Wynn, J., 1975, Recent advances and applications in complex resistivity measurements, Geophysics, 40(5), 851-864. https://doi.org/10.1190/1.1440572