DOI QR코드

DOI QR Code

Transcriptome Analysis of the Barley-Rhynchosporium secalis Interaction

  • 투고 : 2014.04.22
  • 심사 : 2014.08.14
  • 발행 : 2014.12.01

초록

Leaf scald caused by the infection of Rhynchosporium secalis, is a worldwide crop disease resulting in significant loss of barley yield. In this study, a systematic sequencing of expressed sequence tags (ESTs) was chosen to obtain a global picture of the assembly of genes involved in pathogenesis. To identify a large number of plant ESTs, which are induced at different time points, an amplified fragment length polymorphism (AFLP) display of complementary DNA (cDNA) was utilized. Transcriptional changes of 140 ESTs were observed, of which 19 have no previously described function. Functional annotation of the transcripts revealed a variety of infection-induced host genes encoding classical pathogenesis-related (PR) or genes that play a role in the signal transduction pathway. The expression analyses by a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed that Rar1 and Rpg4 are defense inducible genes, and were consistent with the cDNA-AFLP data in their expression patterns. Hence, the here presented transcriptomic approach provides novel global catalogue of genes not currently represented in the EST databases.

키워드

참고문헌

  1. Al-Daoude, A. and Jawhar, M. 2009. Transcriptional changes in barley-Cochliobolus sativus interaction. Austral. Plant Pathol. 38:1-5. https://doi.org/10.1071/AP08068
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25:3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Arabi, M. I. E., Al-Shehadah, E. and Jawhar, M. 2010. Pathogenic groups identified among isolates of Rhynchosporium secalis. Plant Pathol. J. 26:260-263. https://doi.org/10.5423/PPJ.2010.26.3.260
  4. Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K. and Schulze-Lefert, P. 2002. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295:2073-2076. https://doi.org/10.1126/science.1067554
  5. Bachem, C. W. B., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zabeau, M. and Visser, R. G. F. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9:745-753. https://doi.org/10.1046/j.1365-313X.1996.9050745.x
  6. Baldwin, D., Crane, V. and Rice, D. 1999. A Comparison of gel - based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr. Opin. Plant Biol. 2:96-103. https://doi.org/10.1016/S1369-5266(99)80020-X
  7. Bjornstad, A., Patil, V., Tekauz, A., Marooy, A. G., Skinnes, H., Jensen, A., Magnus, H., and MacKey, J. 2002. Resistance to scald (Rhynchosporium secalis) in barley (Hordeum vulgare) studied by near-isogenic lines: I. Markers and differential isolates. Phytopathology 92:710-720. https://doi.org/10.1094/PHYTO.2002.92.7.710
  8. Breyne, P., Dreesen, R. and Vandepoele, K. 2002. Transcriptome analysis during cell division in plants. Proc. Natl. Acad. Sci. USA. 99:14825-14830. https://doi.org/10.1073/pnas.222561199
  9. Brueggeman, R., Steff enson, B. J. and Kleinhofs, A. 2009. The rpg4/Rpg5 stem rust resistance locus in barley; resistance genes and cytoskeleton dynamics. Cell Cycle 8:977-981. https://doi.org/10.4161/cc.8.7.8079
  10. Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G. S., Muthukrishna, S. and Datta, S. K. 1999. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor. Appl. Genet. 98:1138-1145. https://doi.org/10.1007/s001220051178
  11. Druka, A., Kudrna, D., Han, F., Kilian, A., Steffenson, B., Frisch, D., Tomkins, J., Wing, R. and Kleinhofs, A. 2000. Physical mapping of barley stem rust resistance gene rpg4. Mol. Gen. Genet. 264:283-290. https://doi.org/10.1007/s004380000320
  12. Kanyuka, K., Druka, A., Caldwell, D. G., Tymon, A., McCallum, Waugh, R. and Adams, M. J. 2005. Evidence that the recessive bymovirus resistance locus Rym4 in barley corresponding to the eukaryotic translation initiation factor 4E gene. Mol. Plant Pathol. 6:449-458. https://doi.org/10.1111/j.1364-3703.2005.00294.x
  13. Lehnackers, H. and Knogge, W. 1990. Cytological studies on the infection of barley cultivars with known resistance genotypes by Rhynchosporium secalis. Can. J. Bot. 68:1953-1961. https://doi.org/10.1139/b90-257
  14. Linsell, K. J., Keiper, F. J., Forgan, A. and Oldach, K. H. 2011. New insights into the infection process of Rhynchosporium secalis in barley using GFP. Fungal Genet. Biol. 48:124-131. https://doi.org/10.1016/j.fgb.2010.10.001
  15. Looseley, M. E. 2012. Genetic basis of control Rhynchosporium secalis infection ans symptom expression in barley. Euphytica184: 47-56. https://doi.org/10.1007/s10681-011-0485-z
  16. Shirasu, K., Lahaye, T., Tan, M. W., Zhou, F. S., Azevedo, C. and Schulze-Lefert, P. 1999. A novel class of eukaryotic zincbinding proteins is required for disease resistance signaling in barley and development in Caenorhabditis elegans. Cell 99:355-366. https://doi.org/10.1016/S0092-8674(00)81522-6
  17. Shirasu, K. and Schulze-Lefert, P. 2003. Complex formation, promiscuity and multi-functionality: Protein interactions in disease-resistance pathways. Trends Plant Sci. 8:252-258. https://doi.org/10.1016/S1360-1385(03)00104-3
  18. Steiner-Lange, S., Fischer, A., Boettcher, A., Rouhara, I., Liedgens, H., Schmelzer, E. and Knogge, W. 2003. Differential defense reactions in leaf tissues of barley in response to infection by Rhynchosporium secalis and to treatment with a fungal avirulence gene product. Mol. Plant-Microbe Interact. 16:893-902. https://doi.org/10.1094/MPMI.2003.16.10.893
  19. Vuylsteke, M, Peleman, J. D. and van Eijk, M. J. 2007. AFLPbased transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat. Prot. 2:1399-1413. https://doi.org/10.1038/nprot.2007.174
  20. Wagner, C. 2008. Quantitative resistance of barley against scald: a candidate gene approach In: Molina-Cano J. L. (ed.), Christou P. (ed.), Graner A. (ed.), Hammer K. (ed.), Jouve N. (ed.), Keller B. (ed.), Lasa J.M. (ed.), Powell W. (ed.), Royo C. (ed.), Shewry P. (ed.), Stanca A.M. (ed.). Cereal science and technology for feeding ten billion people: genomics era and beyond. Zaragoza :CIHEAM / IRTA, p. 175-177 (Options Mediterraneennes: Serie A. Seminaires Mediterraneens; n. 81).
  21. Wang, X., Richards, J. and Gross, T. 2013. The Rpg4 -mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. Mol. Plant-Microbe Interact. 26:407-418. https://doi.org/10.1094/MPMI-06-12-0146-R
  22. Walters, D. R., Avrova, A. and Bingham, I. J. 2012. Control of foliar diseases in barley: towards an integrated approach. Eur. J. Plant Pathol. 133:33-37. https://doi.org/10.1007/s10658-012-9948-x
  23. Wendy, E. D., Rowland, O., Piedras, P., Kim, E. H. and Jonathan, D. G. J. 2000. cDNA-AFLP reveals a striking overlap in racespecific resistance and wound response gene expression profiles. Plant Cell 12:963-977. https://doi.org/10.1105/tpc.12.6.963
  24. Xi, K., Burnett, P. A., Tewari, J. P., Chen, M. H., Turkington, T. K. and Helm, J. H. 2000. Histopathological study of barley cultivars resistant and susceptible to Rhyncosporium secalis. Phytopathology 90:94-102. https://doi.org/10.1094/PHYTO.2000.90.1.94
  25. Zadoks, J. C., Chang, T. T. and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x