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요 약

본 논문에서는 음성 인식의 효율을 높이기 위하여 음소 클러스터 개수의 효과에 대해 연구하였다. 이를 위

하여 음소 클러스터 개수를 바꾸어 가면서 수정된 k-평균 군집 알고리듬을 사용하여 코우드북을 작성하였다. 

그런 다음, 퍼지 벡터 양자화와 은닉 마코브 모델을 사용하여 음성인식 테스트를 수행하였다. 실험 결과 두 개

의 영역이 구분되어 나타났다. 음소 클러스터 개수가 클 때 인식 성능은 대체로 그와 무관하지만, 개수가 작을 

때에는 그 감소와 더불어 인식 오류율이 비선형적으로 증가하는 것으로 나타났다. 수치 해석적 계산으로부터, 

이 비선형 영역은 멱승함수에 의해 모델링 될 수 있었다. 또한 300개의 고립단어 인식의 경우에, 166개의 음소 

클러스터가 최적의 수임을 보일 수 있었다. 이는 음소당 3개 정도의 변화에 해당하는 값이다.

ABSTRACT

In an effort to improve the efficiency of the speech recognition, we investigate the effect of the number of phoneme clusters. 

For this purpose, codebooks of varied number of phoneme clusters are prepared by modified k-means clustering algorithm. The 

subsequent processing is fuzzy vector quantization (FVQ) and hidden Markov model (HMM) for speech recognition test. The result 

shows that there are two distinct regimes. For large number of phoneme clusters, the recognition performance is roughly 

independent of it. For small number of phoneme clusters, however, the recognition error rate increases nonlinearly as it is 

decreased. From numerical calculation, it is found that this nonlinear regime might be modeled by a power law function. The result 

also shows that about 166 phoneme clusters would be the optimal number for recognition of 300 isolated words. This amounts to 

roughly 3 variations per phoneme.
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Ⅰ. ntroduction

The state of the art in the field of speech 

recognition has now reached such a level of perf-

ormance and robustness, even in noisy enviro-

nment, that permits lots of daily applications. 

Therethrough, we are now living in a world of 

various devices which deploy the relevant 

technology[1-4]. As a method of communication 

between man and machine, speech recognition aff-
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ords a very effective interface. Speech input to a 

machine is about twice as fast as information entry 

by a skilled typist[5].

It is known in practical applications that the 

absolute level of performance is relatively 

unimportant so long as the recognition accuracy 

exceeds some level[6]. When it is above a certain 

threshold (e.g. 92%), the user tends to attribute the 

occasional error to an improper and/or uncoope-

rative speaking mode of his (or her) own, rather 

than to an inadequacy in the speech recognizer. If 

the performance falls below a certain level, 

however, the perception of the user is that the 

system makes too many errors and is therefore 

unreliable. There are so many factors affecting the 

performance of the speech recognition system and 

lots of endeavors for enhancement have been made 

for several decades.

One of the main elements governing the system 

accuracy might be phrased in terms of the 

clustering procedure. As a method to expedite the 

processing and save several kinds of cost, vector 

quantization (VQ) of the feature vectors extracted 

from the speech signal is frequently used. In this 

procedure, we consider some number of repr-

esentative vectors (clusters or classes) and use 

them (actually their indices) in the pattern classifier 

such as HMM or neural networks. Here, the 

following question naturally arises: how many 

exemplary feature vectors are optimal for the best 

performance of a specific speech recognizer?

The number of clusters should somehow reflect 

the number of the basic elements of speech, i.e., 

phonemes in a language. It is usual to consider 

about 50 phonemes for speech processing[7], even 

though there are minor differences from language 

to language. Therefore, if we choose to use, for 

example, 256 clusters for vector quantization, it 

means that five variations for each phoneme on 

average are being considered. By 'variations' we 

mean not only the person-to-person differences but 

the context-dependence in speech production.

It is not known a priori how many variations for 

each phoneme would yield the best performance in 

speech recognition. If the number of clusters is too 

small, then the mesh of discrimination in the 

feature vector space becomes so coarse that the 

resolving power becomes weak and distinction 

between dissimilar patterns would become difficult. 

If the number of clusters is too large, on the other 

hand, then the mesh is so refined that similar 

enough patterns might be classified as different. 

The best number of clusters should be determined 

in such a way that discrimination between 

dissimilar and identification of similar patterns be 

optimally balanced.

For the clustering of the feature vectors, the 

Linde-Buzo-Gray (LBG) algorithm has long been 

used. In this method, the number of clusters are 

successively doubled on each bifurcation starting 

from a single cluster. Therefore, the number of 

clusters can not be chosen arbitrarily in this 

scheme. Codebooks of orders 8～10 corresponding 

to 256～1024 clusters are commonly used on 

empirical grounds.

To examine the effect of the number of clusters 

on speech recognition in more detail than permitted 

by the LBG algorithm, we need to employ another 

tool that permits us to choose the number of 

clusters freely.

The organization of this paper is as follows. 

Section II describes experimental details including a 

slightly modified clustering procedure. After pro-

viding experimental results and mathematical 

analysis for them in section III, concluding remarks 

will be given in section IV.

II. Experiment

Our experiments were performed on a set of 

phone-balanced 300 Korean words. Twenty male 
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and female speakers each produced speech. Though 

the amount of training data was insufficient, speech 

utterances of these people were divided into three 

disjoint groups as shown in Table I.

Table 1. Division of the 40 people's speech 
production into three groups

Group ID Number of People

I 32

II 4

III 4

The group I consisting of 32 people's speech 

was used for codebook generation and training of 

HMM parameters:  , the initial state probabilities, 

, the state transition probabilities, and 

  , the event observation probabilities. 

These parameters are continually updated in the 

course of training iterations. For the choice of 

     to be used in actual recognition test, 

some test speeches are necessary. The parameters 

that yield the best performance on the group II 

were used for the group III to get the final 

performance of the recognition system. This 

prescription prevents the system from falling too 

deep into the local minimum driven by the training 

data of the group I and hence becoming less robust 

against the speaker-independence when applied to 

the group III[8].

Each speech utterance was sampled at 16 kHz 

and quantized by 16 bits. 512 data points corre-

sponding to 32 ms of time duration were taken to 

be a frame. The next frame was obtained by 

shifting 170 data points, thereby overlapping the 

adjacent frames by ≒2/3 in order not to lose any 

information contents of coarticulation. To each 

frame, Hanning window was applied after 

pre-emphasis of spectral flattening. MFCC feature 

vectors of order 13 were then obtained[9].

Codebooks of various number of clusters were 

generated by k-means clustering algorithm. In 

order not to have empty clusters, which incurs 

critical problem in clustering, we slightly modify 

the centroid update according to the work of 

Pakhira[10] as follows. In usual k-means clustering, 

centroid update is performed by

c  
 x∈c

x (1)

where   is the number of vectors belonging to 

the class c. However, in the new scheme, the 

update is done by

c  
 


x∈c

x  cold

 (2)

In this prescription, a fictitious vector is added as 

if it belongs to the updated cluster. This has the 

effect of removing the possibility of having empty 

cluster, which sometimes happens due to unlucky 

initialization. Once the codebook is thus generated, 

the next procedures are applying FVQ and feeding 

the resultant vectors into the pattern recognizer.

As one of the popular recognizers, we employ 

HMM with non-ergodic left-right (or Bakis) machine. 

The number of states that is set separately for each 

class (word) was made proportional to the average 

number of frames of the training samples in that 

class[11]. Initial estimation of HMM parameters was 

obtained by k-means segmental clustering after the 

first training. This procedure makes convergence of 

the parameters so fast.

Backward state transitions were prohibited by 

suppressing the state transition probabilities   

with    to a very small value but skipping of 

states was allowed. The last frame was restricted 

to end up with the final state associated with the 

word being scored within a tolerance of 3. 

Parameter reestimation was performed by Baum- 
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Welch reestimation formula with scaled multiple 

observation sequences to avoid machine errors 

caused by repetitive multiplications of small 

numbers. After each iteration, the parameters     

were boosted above a small value[12].

Three features were monitored while training the 

HMM parameters: (1) the recognition error rate for 

the group II of Table 1, (2) the total probability 

likelihood of events summed over all the words of 

the training set according to the trained model, and 

(3) the event observation probabilities for the first 

state of the first word in the vocabulary list. 

Training was terminated when the convergences 

for these three features were thought to be enough. 

The parameter values of      that give 

the best result for the group II were stored and 

used in speech recognition test on the group III.

III. Results and Discussion

Fig. 1 shows the recognition error rate   vs. the 

number of phonemes clusters   of codebook. We see 

that the recognition error rate is minimum in the 

vicinity of =200. This result implies that consi-

deration of around 4 variations for each Korean 

phoneme is appropriate for speech recognition task.

Fig. 1 The recognition error rate vs. the number of 
phonemes clusters of codebook

The horizontal solid line inserted in Fig. 1 

denotes the ultimate value of the recognition error 

rate for the given system. It is noteworthy that 

further increase of the number of phoneme clusters 

above a certain threshold is of no use in enhancing 

the recognition performance. This implies that there 

exists an optimal value of the number of phoneme 

clusters that allows the best recognition perfor-

mance with the least computational cost. We will 

pursue this issue soon.

Fig. 2 shows the result of Fisher discriminant 

analysis. It is shown that the discriminating power 

increases roughly in proportion to the number of 

clusters. This is as expected in view of the fact 

that the feature vector space becomes fine as the 

number of clusters is increased.

Fig. 2 The fisher discriminant value vs. the number 
of phoneme clusters

The data in Fig. 1 might be phrased in terms of 

two regimes. As the number of phonemes is 

decreased from large values, the recognition 

performance does not show significant change 

(regime I). However, below a certain threshold, 

recognition error rate begins to increase nonlinearly 

(regime II). For numerical analysis of the second 

regime, we first try by the exponential function

   exp (3)
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Here,   and   are adjustable parameters which 

is determined for the best fit of the data. By taking 

the logarithm of both sides and applying the 

routine of the least square method,   and   can 

be calculated. The result is given in Fig. 3.

Fig. 3 Curve-fitting result of the recognition error 
rate vs. the number of clusters by exponential 

model as given by Eq. (3)

We found that

   exp
is the best fit. However, Fig. 3 shows that the 

result is not satisfactory. In a sense, this result is 

obvious since the exponential fit implies that the 

recognition does not diverge but converges to a 

finite value as the number of phoneme clusters 

approaches zero.

For this reason, we employ a power law model

   (4)

instead with   and   adjustable parameters. 

From a similar calculation, the best fit was found 

to be

   

which is shown in Fig. 4 by a curved solid line. 

We see that the result is satisfactory this time.

Fig. 4 Curve-fitting result of the recognition error 
rate vs. the number of clusters by power law model

In Fig. 4, it is also shown that the optimal value 

of the number of phoneme clusters is , 

which corresponds to about 3 variations for each 

Korean phoneme. By "optimal", we mean that it 

requires the minimum computational cost without 

degradation of the system performance.

It should be remarked that the estimated 

parameter values in our work is system dependent. 

Our experiment was performed on a small-size 

environment due to various limitations. For large 

vocabulary and large speech tokens, it might be 

inferred that the optimal number of phonemes be 

larger than our result obtained in this paper. All in 

all, it might be phrased that it is desirable to 

search for the optimal number of phoneme clusters 

that requires minimum computational cost without 

deteriorating the recognition capability.

IV. Conclusion

In order to find the optimal number of clusters 

for speaker-independent speech recognition, we 

varied the number of clusters in codebook gene-

ration and examined the resultant effect on the 

speech recognition performance. As we decrease the 

cluster numbers from large values, the recognition 
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error rate does not show significant change until it 

reaches a certain threshold value. After that it 

begins to increase nonlinearly.

We modeled the nonlinear regime in two ways. 

Numerical estimation showed that power fit was 

better than exponential one. The result yielded that 

166 cluster size for codebook was optimal in the 

sense that it requires the least computational cost 

without degrading the recognition performance.

This result suggests that about 3 variations per 

phoneme might be desirable at least in the case of 

our study. It should be kept in mind, however, that 

the obtained result be system dependent.
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