References
- B. Bhushan, "Biomimetics Inspired Surfaces for Drag Reduction and Oleophobicity/Philicity," Beilstein J. Nanotechnol., 2 [1] 66-84 (2011). https://doi.org/10.3762/bjnano.2.9
- B. Bhushan, "Biomimetics: Lessons from Nature-An Overview," Philos. Trans. R. Soc., A, 367 [1893] 1445-86 (2009). https://doi.org/10.1098/rsta.2009.0011
- Q. Chen and N. M. Pugno, "Bio-mimetic Mechanisms of Natural Hierarchical Materials: A Review," J. Mech. Behav. Biomed. Mater., 19 3-33 (2013). https://doi.org/10.1016/j.jmbbm.2012.10.012
- I. Corni, T. J. Harvey, J. A. Wharton, K. R. Stokes, F. C. Walsh, and R. J. K. Wood, "A Review of Experimental Techniques to Produce a Nacre-like Structure," Bioinspiration Biomimetics, 7 [3] 031001 (2012). https://doi.org/10.1088/1748-3182/7/3/031001
- F. Barthelat, H. Tang, P. D. Zavattieri, C. M. Li, and H. D. Espinosa, "On the Mechanics of Mother-of-pearl: A Key Feature in the Material Hierarchical Structure," J. Mech. Phys. Solids, 55 [2] 306-37 (2007). https://doi.org/10.1016/j.jmps.2006.07.007
- H. Kakisawa and T. Sumitomo, "The Toughening Mechanism of Nacre and Structural Materials Inspired by Nacre," Sci. Technol. Adv. Mater., 12 [6] 064710 (2011). https://doi.org/10.1088/1468-6996/12/6/064710
- F. Barthelat, C. M. Li, C. Comi, and H. D. Espinosa, "Mechanical Properties of Nacre Constituents and Their Impact on Mechanical Performance," J. Mater. Res., 21 [8] 1977-86 (2006). https://doi.org/10.1557/jmr.2006.0239
- R. Wang and H. S. Gupta, "Deformation and Fracture Mechanisms of Bone and Nacre," Annu. Rev. Mater. Res., 41 41-73 (2011). https://doi.org/10.1146/annurev-matsci-062910-095806
- R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, and I. A. Aksay, "Deformation Mechanisms in Nacre," J. Mater. Res., 16 [09] 2485-93 (2001). https://doi.org/10.1557/JMR.2001.0340
- P. Somasundran, B. Markovic, S. Krishnakumar, and X. Yu, pp. 127-92, Ed. by K. S. Birdi, Handbook of Surface and Colloid Chemistry, CRC Press, Boca Raton, FL, 1997.
- F. J. Maile, G. Pfaff, and P. Reynders, "Effect Pigments - Past, Present and Future," Prog. Org. Coat., 54 [3] 150-63 (2005). https://doi.org/10.1016/j.porgcoat.2005.07.003
- R. A. Eppler, "Selecting Ceramic Pigments," Proc., Annu. Meet. Jt. Fall Meet. - Am. Ceram. Soc., Mater. Equip. Whitewares Div., 8 [11/12] 1139-49 (2008).
- L. J. Bonderer, K. Feldman, and L. J. Gauckler, "Plateletreinforced Polymer Matrix Composites by Combined Gelcasting and Hot-pressing. Part I: Polypropylene Matrix Composites," Compos. Sci. Technol., 70 [13] 1958-65 (2010). https://doi.org/10.1016/j.compscitech.2010.07.014
- O. Ekiz, A. F. Dericioglu, and H. Kakisawa, "An Efficient Hybrid Conventional Method to Fabricate Nacre-like Bulk Nano-laminar Composites," Mater. Sci. Eng., C, 29 [6] 2050-54 (2009). https://doi.org/10.1016/j.msec.2009.04.001
- S. N. Gurbuz and A. F. Dericioglu, "Effect of Reinforcement Surface Functionalization on the Mechanical Properties of Nacre-like Bulk Lamellar Composites Processed by a Hybrid Conventional Method," Mater. Sci. Eng., C, 33 [4] 2011-19 (2013). https://doi.org/10.1016/j.msec.2013.01.013
-
N. E. Bell, S. B. Cho, and J. H. Adair, "Size and Shape Control of
${\alpha}$ -Alumina Particles Synthesized in 1,4-Butanediol Solution by${\alpha}$ -Alumina and${\alpha}$ -Hematite Seeding," J. Am. Ceram. Soc., 81 [6] 1411-20 (1998). -
S. F. Chen, S. H. Yu, T. X. Wang, J. Jiang, H. Colfen, B. Hu, and B. Yu, "Polymer-Directed Formation of Unusual
$CaCO_3$ Pancakes with Controlled Surface Structures," Adv. Mater., 17 [12] 1461-65 (2005). https://doi.org/10.1002/adma.200401957 - S. P. Garcia and S. Semancik, "Controlling the Morphology of Zinc Oxide Nanorods Crystallized from Aqueous Solutions: The Effect of Crystal Growth Modifiers on Aspect Ratio," Chem. Mater., 19 [16] 4016-22 (2007). https://doi.org/10.1021/cm061977r
- S. -H. Yu and H. Colfen, "Bio-inspired Crystal Morphogenesis by Hydrophilic Polymers," J. Mater. Chem., 14 [14] 2124-47 (2004). https://doi.org/10.1039/b401420k
- N. J. Nicholas, G. V. Franks, and W. A. Ducker, "Selective Adsorption to Particular Crystal Faces of ZnO," Langmuir, 28 [18] 7189-96 (2012). https://doi.org/10.1021/la2050674
- M. N. Danchevskaya, Y. D. Ivakin, S. N. Torbin, and G. P. Muravieva, "The Role of Water Fluid in the Formation of Fine-Crystalline Oxide Structure," J. Supercrit. Fluids, 42 [3] 419-24 (2007). https://doi.org/10.1016/j.supflu.2007.03.007
-
W. J. Li, E. W. Shi, and Z. W. Yin, "Growth Habit of Rutile and
${\alpha}-Al_2O_3$ Crystals," J. Cryst. Growth, 208 [1] 546-54 (2000). https://doi.org/10.1016/S0022-0248(99)00419-4 -
S. G. Lee, H. C. Park, B. S. Kang, G. S. Seo, S. S. Hong, and S. S. Park, "Synthesis of
${\alpha}$ -alumina Platelets from${\gamma}$ -alumina with and without Microwaves," Mater. Sci. Eng., A, 466 [1] 79-83 (2007). https://doi.org/10.1016/j.msea.2007.02.041 -
L. -H. Zhu, Q. -W. Huang, and W. Liu, "Synthesis of Platelike
${\alpha}-Al_2O_3$ Single-crystal Particles in NaCl-KCl Flux Using$Al(OH)_3$ Powders and Starting Materials," Ceram. Int., 34 [7] 1729-33 (2008). https://doi.org/10.1016/j.ceramint.2007.05.011 -
S. Hashimoto, S. Zhang, W. E. Lee, and A. Yamaguchi, "Synthesis of Magnesium Aluminate Spinel Platelets from
${\alpha}$ -Alumina Platelet and Magnesium Sulfate Precursors," J. Am. Ceram. Soc., 86 [11] 1959-61 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03589.x - B. Y. Kim, Y. J. Lee, D. Shin, S. R. Kim, W. T. Kwon, and Y. Kim, "Effect of Salt on Crystal Growth of Plate-like Alumina Particles by Molten-salt Method," Korean Chem. Eng. Res. - Submitted.
- W. L. Suchanek, J. M. Garces, P. F. Fulvio, and M. Jaroniec, "Hydrothermal Synthesis and Surface Characteristics of Novel Alpha Alumina Nanosheets with Controlled Chemical Composition," Chem. Mater., 22 [24] 6564-74 (2010). https://doi.org/10.1021/cm102158w
Cited by
- Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.248