DOI QR코드

DOI QR Code

Formation of Asperites on the Plate-like Alumina Particles by Molten-salt Method

Molten-salt 방법에 의해 합성되는 판상형 알루미나 분말 표면에 돌기형성 거동

  • Lee, Yoon Joo (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Bo Yeon (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dong-Geun (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo Ryong (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo Teck (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Younghee (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology)
  • 이윤주 (한국세라믹기술원 에너지효율소재팀) ;
  • 김보연 (한국세라믹기술원 에너지효율소재팀) ;
  • 신동근 (한국세라믹기술원 에너지효율소재팀) ;
  • 김수룡 (한국세라믹기술원 에너지효율소재팀) ;
  • 권우택 (한국세라믹기술원 에너지효율소재팀) ;
  • 김영희 (한국세라믹기술원 에너지효율소재팀)
  • Received : 2014.11.24
  • Accepted : 2014.11.27
  • Published : 2014.11.30

Abstract

Alumina nano-asperites were grown on plate-like alumina particles of which the surface had been covered with a capping agent to control the asperite formation sites on the particles. Utilized alumina source for asperite was nano sized ${\gamma}$-alumina, which was prepared by calcination of $Al(OH)_3$ at $600^{\circ}C$; silica suspension was used as the capping agent. Plate like alumina particles were covered by silica suspension and continuously heat-treated to $900^{\circ}C$ with nano sized ${\gamma}$-alumina, as the source material, under molten-salt atmosphere. Asperite growing site were controlled by the degree of coating of the capping agent; 10-20 nanosize of ${\theta}$-alumina were formed on the particle surface. On the other hand, alumina particles without capping agent were observed to undergo only step-like crystal growth during heat-treatment.

Keywords

References

  1. B. Bhushan, "Biomimetics Inspired Surfaces for Drag Reduction and Oleophobicity/Philicity," Beilstein J. Nanotechnol., 2 [1] 66-84 (2011). https://doi.org/10.3762/bjnano.2.9
  2. B. Bhushan, "Biomimetics: Lessons from Nature-An Overview," Philos. Trans. R. Soc., A, 367 [1893] 1445-86 (2009). https://doi.org/10.1098/rsta.2009.0011
  3. Q. Chen and N. M. Pugno, "Bio-mimetic Mechanisms of Natural Hierarchical Materials: A Review," J. Mech. Behav. Biomed. Mater., 19 3-33 (2013). https://doi.org/10.1016/j.jmbbm.2012.10.012
  4. I. Corni, T. J. Harvey, J. A. Wharton, K. R. Stokes, F. C. Walsh, and R. J. K. Wood, "A Review of Experimental Techniques to Produce a Nacre-like Structure," Bioinspiration Biomimetics, 7 [3] 031001 (2012). https://doi.org/10.1088/1748-3182/7/3/031001
  5. F. Barthelat, H. Tang, P. D. Zavattieri, C. M. Li, and H. D. Espinosa, "On the Mechanics of Mother-of-pearl: A Key Feature in the Material Hierarchical Structure," J. Mech. Phys. Solids, 55 [2] 306-37 (2007). https://doi.org/10.1016/j.jmps.2006.07.007
  6. H. Kakisawa and T. Sumitomo, "The Toughening Mechanism of Nacre and Structural Materials Inspired by Nacre," Sci. Technol. Adv. Mater., 12 [6] 064710 (2011). https://doi.org/10.1088/1468-6996/12/6/064710
  7. F. Barthelat, C. M. Li, C. Comi, and H. D. Espinosa, "Mechanical Properties of Nacre Constituents and Their Impact on Mechanical Performance," J. Mater. Res., 21 [8] 1977-86 (2006). https://doi.org/10.1557/jmr.2006.0239
  8. R. Wang and H. S. Gupta, "Deformation and Fracture Mechanisms of Bone and Nacre," Annu. Rev. Mater. Res., 41 41-73 (2011). https://doi.org/10.1146/annurev-matsci-062910-095806
  9. R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, and I. A. Aksay, "Deformation Mechanisms in Nacre," J. Mater. Res., 16 [09] 2485-93 (2001). https://doi.org/10.1557/JMR.2001.0340
  10. P. Somasundran, B. Markovic, S. Krishnakumar, and X. Yu, pp. 127-92, Ed. by K. S. Birdi, Handbook of Surface and Colloid Chemistry, CRC Press, Boca Raton, FL, 1997.
  11. F. J. Maile, G. Pfaff, and P. Reynders, "Effect Pigments - Past, Present and Future," Prog. Org. Coat., 54 [3] 150-63 (2005). https://doi.org/10.1016/j.porgcoat.2005.07.003
  12. R. A. Eppler, "Selecting Ceramic Pigments," Proc., Annu. Meet. Jt. Fall Meet. - Am. Ceram. Soc., Mater. Equip. Whitewares Div., 8 [11/12] 1139-49 (2008).
  13. L. J. Bonderer, K. Feldman, and L. J. Gauckler, "Plateletreinforced Polymer Matrix Composites by Combined Gelcasting and Hot-pressing. Part I: Polypropylene Matrix Composites," Compos. Sci. Technol., 70 [13] 1958-65 (2010). https://doi.org/10.1016/j.compscitech.2010.07.014
  14. O. Ekiz, A. F. Dericioglu, and H. Kakisawa, "An Efficient Hybrid Conventional Method to Fabricate Nacre-like Bulk Nano-laminar Composites," Mater. Sci. Eng., C, 29 [6] 2050-54 (2009). https://doi.org/10.1016/j.msec.2009.04.001
  15. S. N. Gurbuz and A. F. Dericioglu, "Effect of Reinforcement Surface Functionalization on the Mechanical Properties of Nacre-like Bulk Lamellar Composites Processed by a Hybrid Conventional Method," Mater. Sci. Eng., C, 33 [4] 2011-19 (2013). https://doi.org/10.1016/j.msec.2013.01.013
  16. N. E. Bell, S. B. Cho, and J. H. Adair, "Size and Shape Control of ${\alpha}$-Alumina Particles Synthesized in 1,4-Butanediol Solution by ${\alpha}$-Alumina and ${\alpha}$-Hematite Seeding," J. Am. Ceram. Soc., 81 [6] 1411-20 (1998).
  17. S. F. Chen, S. H. Yu, T. X. Wang, J. Jiang, H. Colfen, B. Hu, and B. Yu, "Polymer-Directed Formation of Unusual $CaCO_3$ Pancakes with Controlled Surface Structures," Adv. Mater., 17 [12] 1461-65 (2005). https://doi.org/10.1002/adma.200401957
  18. S. P. Garcia and S. Semancik, "Controlling the Morphology of Zinc Oxide Nanorods Crystallized from Aqueous Solutions: The Effect of Crystal Growth Modifiers on Aspect Ratio," Chem. Mater., 19 [16] 4016-22 (2007). https://doi.org/10.1021/cm061977r
  19. S. -H. Yu and H. Colfen, "Bio-inspired Crystal Morphogenesis by Hydrophilic Polymers," J. Mater. Chem., 14 [14] 2124-47 (2004). https://doi.org/10.1039/b401420k
  20. N. J. Nicholas, G. V. Franks, and W. A. Ducker, "Selective Adsorption to Particular Crystal Faces of ZnO," Langmuir, 28 [18] 7189-96 (2012). https://doi.org/10.1021/la2050674
  21. M. N. Danchevskaya, Y. D. Ivakin, S. N. Torbin, and G. P. Muravieva, "The Role of Water Fluid in the Formation of Fine-Crystalline Oxide Structure," J. Supercrit. Fluids, 42 [3] 419-24 (2007). https://doi.org/10.1016/j.supflu.2007.03.007
  22. W. J. Li, E. W. Shi, and Z. W. Yin, "Growth Habit of Rutile and ${\alpha}-Al_2O_3$ Crystals," J. Cryst. Growth, 208 [1] 546-54 (2000). https://doi.org/10.1016/S0022-0248(99)00419-4
  23. S. G. Lee, H. C. Park, B. S. Kang, G. S. Seo, S. S. Hong, and S. S. Park, "Synthesis of ${\alpha}$-alumina Platelets from ${\gamma}$-alumina with and without Microwaves," Mater. Sci. Eng., A, 466 [1] 79-83 (2007). https://doi.org/10.1016/j.msea.2007.02.041
  24. L. -H. Zhu, Q. -W. Huang, and W. Liu, "Synthesis of Platelike ${\alpha}-Al_2O_3$ Single-crystal Particles in NaCl-KCl Flux Using $Al(OH)_3$ Powders and Starting Materials," Ceram. Int., 34 [7] 1729-33 (2008). https://doi.org/10.1016/j.ceramint.2007.05.011
  25. S. Hashimoto, S. Zhang, W. E. Lee, and A. Yamaguchi, "Synthesis of Magnesium Aluminate Spinel Platelets from ${\alpha}$-Alumina Platelet and Magnesium Sulfate Precursors," J. Am. Ceram. Soc., 86 [11] 1959-61 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03589.x
  26. B. Y. Kim, Y. J. Lee, D. Shin, S. R. Kim, W. T. Kwon, and Y. Kim, "Effect of Salt on Crystal Growth of Plate-like Alumina Particles by Molten-salt Method," Korean Chem. Eng. Res. - Submitted.
  27. W. L. Suchanek, J. M. Garces, P. F. Fulvio, and M. Jaroniec, "Hydrothermal Synthesis and Surface Characteristics of Novel Alpha Alumina Nanosheets with Controlled Chemical Composition," Chem. Mater., 22 [24] 6564-74 (2010). https://doi.org/10.1021/cm102158w

Cited by

  1. Asperities on the Surface of Plate-like Alumina and their Effect on Nacre-inspired Alumina-PMMA Composites vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.248