DOI QR코드

DOI QR Code

Phase Formation and Thermo-physical Properties of GdO1.5-ZrO2 System for Thermal Barrier Coating Application

열차폐코팅용 GdO1.5-ZrO2계 희토류 지르코네이트 세라믹스의 상형성과 열물리 특성

  • Kim, Sun-Joo (Engineering Ceramic Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Won-Jun (Engineering Ceramic Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Kwon, Chang-Sup (Engineering Ceramic Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Im, Dae-Soon (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Seongwon (Engineering Ceramic Team, Korea Institute of Ceramic Engineering & Technology)
  • 김선주 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 이원준 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 권창섭 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 김형태 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 임대순 (고려대학교 신소재공학과) ;
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹팀)
  • Received : 2014.11.07
  • Accepted : 2014.11.21
  • Published : 2014.11.30

Abstract

Gadolinium zirconate, $Gd_2Zr_2O_7$, is one of the most promising candidates for replacing yttira-stabilized zirconia (YSZ) in thermal barrier coating (TBC) applications due to its low thermal conductivity and chemical stability at high temperature. In this study, rare-earth zirconate ceramics in the $GdO_{1.5}-ZrO_2$ system with reduced gadolinia contents were fabricated via solid-state reaction as well as hot-pressing at $1800^{\circ}C$. The phase formation, microstructure, and thermo-physical properties of these oxides were examined. The potential application of $GdO_{1.5}-ZrO_2$ ceramics for TBC was also discussed.

Keywords

References

  1. D. R. Clarke and S. R. Phillpot, "Thermal Barrier Coating Materials," Mater. Today, 8 [6] 22-29 (2005).
  2. D. R. Clarke, M. Oechsner, and N. P. Padture, "Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines," MRS Bull., 37 [10] 891-98 (2012). https://doi.org/10.1557/mrs.2012.232
  3. C. Kim, Y. S. Heo, T. W. Kim, and K. S. Lee, "Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying(in Korean)," J. Korean Ceram. Soc., 50 [5] 326-32 (2013). https://doi.org/10.4191/kcers.2013.50.5.326
  4. W. J. Lee, B. K. Jang, D. S. Lim, Y. S. Oh, S. W. Kim, H. T. Kim, H. Araki, H. Murakami, and S. Kuroda, "Hot Corrosion Behavior of Plasma Sprayed 4 mol% $Y_2O_3-ZrO_2$ Thermal Barrier Coatings with Volcanic Ash(in Korean)," J. Korean Ceram. Soc., 50 [6] 353-58 (2013). https://doi.org/10.4191/kcers.2013.50.6.353
  5. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, "Zirconates as New Materials for Thermal Barrier Coatings," J. Am. Ceram. Soc., 83 [8] 2023-28 (2000).
  6. W. Pan, S. R. Phillpot, C. Wan, A. Chernatynskiy, and Z. Qu, "Low Thermal Conductivity Oxides," MRS Bull., 37 [10] 917-22 (2012). https://doi.org/10.1557/mrs.2012.234
  7. X. Q. Cao, R. Vassen, and D. Stoever, "Ceramic Materials for Thermal Barrier Coatings," J. Eur. Ceram. Soc., 24 [1] 1-10 (2004). https://doi.org/10.1016/S0955-2219(03)00129-8
  8. J. Wu, X. Wei, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M. I. Osendi, "Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications," J. Am. Ceram. Soc., 85 [12] 3031-35 (2002).
  9. C. Wang, Y. Wang, Y. Cheng, W. Huang, Z. S. Khan, X. Fan, Y. Wang, B. Zou, and X. Cao, "Preparation and Thermophysical Properties of Nano-Sized $Ln_2Zr_2O_7$ (Ln= La, Nd, Sm, and Gd) Ceramics with Pyrochlore Structure," J. Mater. Sci., 47 [10] 4392-99 (2012). https://doi.org/10.1007/s10853-012-6293-6
  10. J. W. Fergus, "Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines," Metall. Mater. Trans. E, 1 [2] 118-31 (2014).
  11. H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, and D. Stover, "Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System," J. Am. Ceram. Soc., 86 [8] 1338-44 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03473.x
  12. C. G. Levi, "Emerging Materials and Processes for Thermal Barrier Systems," Curr. Opin. Solid State Mater. Sci., 8 [1] 77-91 (2004). https://doi.org/10.1016/j.cossms.2004.03.009
  13. O. Fabrichnaya, C. Wang, M. Zinkevich, F. Aldinger, and C. Levi, "Phase Equilibria and Thermodynamic Properties of the $ZrO_2-GdO_{1.5}-YO_{1.5}$ System," J. Phase Equilib. Diffus., 26 [6] 591-604 (2005). https://doi.org/10.1007/s11669-005-0004-9
  14. J. Wu, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M. I. Osendi, "Thermal Conductivity of Ceramics in the $ZrO_2-GdO_{1.5}$ System," J. Mater. Res., 17 [12] 3193-200 (2002). https://doi.org/10.1557/JMR.2002.0462
  15. B.-K. Jang, S. Kim, Y.-S. Oh, H.-T. Kim, Y. Sakka, and H. Murakami, "Effect of $Gd_2O_3$ on the Thermal Conductivity of $ZrO_2-4$ mol $Y_2O_3$ Ceramics Fabricated by Spark Plasma Sintering," Scr. Mater., 69 [2] 165-70 (2013). https://doi.org/10.1016/j.scriptamat.2013.01.037
  16. R. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Cryst. A., 32 [5] 751-67 (1976). https://doi.org/10.1107/S0567739476001551
  17. D. Michel and R. Collongues, "Study by Raman Spectroscopy of Order-Disorder Phenomena Occurring in Some Binary Oxides with Fluorite-Related Structures," J. Raman Spectrosc., 5 [2] 163-80 (1976). https://doi.org/10.1002/jrs.1250050208
  18. R. Leckie, S. Kramer, M. Ruhle, and C. Levi, "Thermochemical Compatibility Between Alumina and $ZrO_2-GdO_{3/2}$ Thermal Barrier Coatings," Acta Mater., 53 [11] 3281-92 (2005). https://doi.org/10.1016/j.actamat.2005.03.035
  19. P. Klemens and M. Gell, "Thermal Conductivity of Thermal Barrier Coatings," Mater. Sci. Eng. A, 245 [2] 143-49 (1998). https://doi.org/10.1016/S0921-5093(97)00846-0
  20. C. Kittel and P. McEuen, Introduction to Solid State Physics; 8th Ed., pp. 125-28. Wiley New York, USA, 1986.
  21. P. G. Klemens, "Thermal Conductivity of Inhomogeneous Media," High Temp.-High Pressure, 23 [3] 241-48 (1991).

Cited by

  1. Fabrication and Characterization of Ceramics and Thermal Barrier Coatings of Lanthanum Zirconate with Reduced Rare-earth Contents in the La2O3-ZrO2 System vol.22, pp.6, 2015, https://doi.org/10.4150/KPMI.2015.22.6.413
  2. Phase Formation and Thermo-physical Properties of Lanthanum/Gadolinium Zirconate with Reduced Rare-earth Contents for Thermal Barrier Coatings vol.22, pp.6, 2015, https://doi.org/10.4150/KPMI.2015.22.6.420
  3. System by Using Suspension Plasma Spray with Different Suspension Preparations vol.49, pp.6, 2016, https://doi.org/10.5695/JKISE.2016.49.6.595
  4. Fabricated by Suspension Plasma Spray vol.49, pp.6, 2016, https://doi.org/10.5695/JKISE.2016.49.6.604
  5. Characteristics of Bulk and Coating in Gd2−xZr2+xO7+0.5x(x = 0.0, 0.5, 1.0) System for Thermal Barrier Coatings vol.53, pp.6, 2016, https://doi.org/10.4191/kcers.2016.53.6.652
  6. Interfacial Structure and Physical Properties of High-Entropy Oxide Coatings Prepared via Atmospheric Plasma Spraying vol.11, pp.7, 2021, https://doi.org/10.3390/coatings11070755