DOI QR코드

DOI QR Code

Technological Progress Towards Commercialization of Organometal Halide Perovskite Solar Cells

유기금속 할라이드 페로브스카이트 태양전지의 상용화를 위한 기술의 진전

  • Pyun, Sun Ho (Korea Institute of Science and Technology Information, ReSEAT Program)
  • 변선호 (한국과학기술정보연구원 ReSEAT 프로그램)
  • Received : 2014.11.10
  • Accepted : 2014.11.24
  • Published : 2014.12.01

Abstract

A marvellous solar cell technology system based on organometal halide perovskites has recently shown an unprecedented progress in power conversion efficiency (PCE); the certified one of 17.9% and unconfirmed of 19.3%, as well as the estimated electricity with a generating cost lower than the half of conventional methods based on fossil fuels. In this report the present status of stability with regards to moisture, ambient temperature, ultraviolet and lead toxicity as well as the key technological developments for the early commercialization are covered. Comprehensive understanding of material science for perovskites is required, together with complete encapsulation technologies beyond those for OLEDs, in order to ensure a 20-year-longer-than lifetime of PSCs (perovskite solar cells) and the stability according to the IEC 61646 damp heat test standard, which will result in the replacement of silicon solar cells with PSCs.

Keywords

References

  1. H. S. Kim, S. H. Im, and N. G. Park, J. Phys. Chem. C, 118, 5615 (2014).
  2. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). https://doi.org/10.1021/ja809598r
  3. H. S. Kim and N. G. Park, Sci. Rep., 2, 591 (2012). https://doi.org/10.1038/srep00591
  4. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science, 338, 643 (2012). https://doi.org/10.1126/science.1228604
  5. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature, 499, 316 (2013). https://doi.org/10.1038/nature12340
  6. N. J. Jeon, J. M. Lee, J. H. Noh, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, J. Am. Chem. Soc., 135, 19087 (2013). https://doi.org/10.1021/ja410659k
  7. M. Liu, M. B. Johnston, and H. J. Snaith, Nature, 501, 395 (2013). https://doi.org/10.1038/nature12509
  8. N. J. Jeon, J. H. Noh, and S. I. Seok, Nat. Mater., DOI: 10.1038/NMAT 4014, (2014).
  9. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett., 13, 1764 (2013). https://doi.org/10.1021/nl400349b
  10. S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, Nano Lett., 14, 5561 (2014). https://doi.org/10.1021/nl501982b
  11. T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, Nat. Commun., 4, Article No. 2885 (2013).
  12. S. Ito, S. Tanaka, and H. Nishino, J. Phys. Chem. C, 118, 16995 (2014). https://doi.org/10.1021/jp500449z
  13. J. W. Lee, D. J. Seol, and N. G. Park, Adv. Mater. Supporting Information, 26, 4991 (2014).
  14. J. W. Lee, D. J. Seol, and N. G. Park, Adv. Mater., 26, 4991 (2014) https://doi.org/10.1002/adma.201401137
  15. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. Tse-Wei Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett., 5, 1511 (2014). https://doi.org/10.1021/jz500113x
  16. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem., 52, 9019 (2013). https://doi.org/10.1021/ic401215x
  17. H. S. Kim and N. G. Park, J. Phys. Chem. Lett., 5, 2927 (2014). https://doi.org/10.1021/jz501392m
  18. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Adv. Mater., 26, 6503 (2014). https://doi.org/10.1002/adma.201401685
  19. M. MCGehee, 2014 Energy Seminar (2014).
  20. A. Sadhanala, F. Deschler, T. H. Thomas, S. E. Dutton, K. C. Goedel, F. C. Hanusch, M. L. Lai, U. Steiner, T. Bein, P. Docampo, D. Cahen, and R. H. Friend, J. Phys. Chem. Lett., 5, 2501 (2014). https://doi.org/10.1021/jz501332v
  21. E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, J. Phys. Chem. Lett., 5, 429 (2014). https://doi.org/10.1021/jz402706q
  22. F. Hao, C. C. Stoumpos, D. H. Cao, R.P.H. Chang, and M. G. Kanatzidis, Nat. Photonics, 8, 489 (2014). https://doi.org/10.1038/nphoton.2014.82
  23. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, Energy Environ. Sci., 7, 3061 (2014). https://doi.org/10.1039/C4EE01076K
  24. F. Hao, C. C. Stoumpos, R.P.H. Chang, and M. G. Kanatzidis, J. Am. Chem. Soc., 136, 8094 (2014). https://doi.org/10.1021/ja5033259
  25. K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate and H. J. Snaith, Energy Environ. Sci., 7, 1142 (2014). https://doi.org/10.1039/c3ee43707h
  26. J.T.W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, Nano Lett., 14, 724 (2014). https://doi.org/10.1021/nl403997a
  27. D. Liu and T. L. Kelly, Nat. Photonics, 8, 133 (2014). https://doi.org/10.1038/nphoton.2013.342
  28. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater., 24, 151 (2014). https://doi.org/10.1002/adfm.201302090
  29. J. H. Im, I. H. Jang, N. Pellet, M. Gratzel, and N. G. Park, Nat. Nanotechnol., 9, 927 (2014). https://doi.org/10.1038/nnano.2014.181
  30. News Releases 2013, http://www.kuraray.co.jp/en/ release/2013/131002.html.
  31. A. Hinsch, S. Mastroianni, H. Brandt, F. Heinz, M. C. Schubert, and W. Veurman, 29th European PV Solar Energy Conference and Exhibition (Amsterdam, The Netherlands, 2014). p. 1-5.

Cited by

  1. Performance of Crystalline Si Solar Cells with Temperature Controlled by a Thermoelectric Module vol.27, pp.7, 2015, https://doi.org/10.6110/KJACR.2015.27.7.375