DOI QR코드

DOI QR Code

Sliding Mode Control Based on 3-Loop of a Pneumatic Motor

공압모터의 3-루프 기반 슬라이딩 모드 제어

  • Kim, Geun-Mook (Division of Automotive Engineering, Ajou Motor College)
  • 김근묵 (아주자동차대학 자동차계열)
  • Received : 2014.10.24
  • Accepted : 2014.11.06
  • Published : 2014.11.30

Abstract

Pneumatic motors are quite attractive for many applications because of their competitive price, light-weight, easy assembly, safety in hazardous areas as well as other features, such as a good force/weight ratio and operation in exceptionally harsh environments. In contrast to these advantages, pneumatic motors have limited use in applications, particularly those requiring a fast and precise response. These undesirable characteristics are due to the high compressibility of air and from the nonlinearities in pneumatic systems. This paper presents the sliding mode controller based on 3-loop(SMCB3L), which increases the load stiffness to control the rotation angle of a pneumatic motor. The characteristics for the step responses and load disturbances of the proposed controller were compared with the conventional PID controller. The experimental results showed that a properly designed SMCB3L is capable of high positioning accuracy within ${\pm}0.05mm$. Furthermore, the load stiffness of the SMCB3L can be improved 3.5 fold compared to that of PID controllers.

공압모터는 저렴한 가격, 가벼운 무게, 용이한 조립, 중량대비 힘, 위험한 지역에서도 안전한 내부 구조와 더블어 매우 가혹한 환경에서도 작동하기 때문에 여러 분야의 응용에 매우 매력적이다. 이러한 장점에도 불구하고, 공압모터는 빠르고 정확한 응답을 필요로 하는 용도에 있어서 그 사용을 제한하는 여러 가지 바람직하지 않은 특성을 나타낸다. 이러한 바람직하지 않은 특성은 공기의 높은 압축성과 공압모터 구동시스템에 존재하는 비선형성에 기인한다. 본 논문에서는 공압모터의 회전각 제어시 강성을 높이기 위해 3-루프 기반 슬라이딩 모드 제어기를 제안하였으며 계단 응답과 외란 부하에 대한 응답 특성을 기존 PID 제어기와 비교 하였다. 공압모터 위치제어에 적용하여 본 결과 공압모터의 위치제어 정밀도는 ${\pm}0.05mm$ 이내로 제어할 수 있으며 부하에 대한 강성은 기존 PID제어기 보다 3.5배 향상됨을 보였다.

Keywords

References

  1. M. O. Tokhi, M. Al-Miskiry, M. Brisland, "Real-time control of air motors using a pneumatic H-bridge", Control Engineering Practice, vol. 9, no. 4, pp. 449-457, 2001. DOI: http://dx.doi.org/10.1016/S0967-0661(00)00122-2
  2. Geun-Mook kim, E-Sok Kang, "Sliding Mode Control with Velocity Feedforward Gain of a Pneumatic Motor", Journal of Control, Automation and Systems Engineering Vol. 12, No. 11, pp. 1061-1064, 2006. DOI: http://dx.doi.org/10.5302/J.ICROS.2006.12.11.1061
  3. Geun-Mook kim, "The Ball Screw Position Control System Driven by a Pneumatic Motor Using Continous Sliding Mode", The Korean Society of Industrials Application, Vol.11, No.4, pp.209-216, 2008.
  4. F. Takemura, S. R. Pandian, Y. Nagase, H. Mizutani, Y. Hayakawa, S. Kawamura, "Control of a hybrid-pneumatic/electric motor", Proc. of IEEE Int'l Conf. on Intelligent Robots and Systems, pp. 209-214, 2000. DOI: http://dx.doi.org/10.1109/IROS.2000.894606
  5. H. M. Mahgoub, I. A. Craighead, "Development of a microprocessor based control system for a pneumatic rotary actuator", Mechatronics, vol. 5, no. 5, pp. 541-560, 1995. DOI: http://dx.doi.org/10.1016/0957-4158(95)00025-Z
  6. J. Pu, P. R. Moore, R. H. Weston, "Digital servo motion control of air motors", Int. J. of Production Research, vol. 29, no. 3, pp. 599-618, 1991. DOI: http://dx.doi.org/10.1080/00207549108930091
  7. J. Wang, J. Pu, P. R. Moore, Z. Zhang, "Modelling study and servo control of air motor systems", Int. J. of Control, Vol. 71, no. 3, pp. 459-476, 1998. DOI: http://dx.doi.org/10.1080/002071798221777
  8. Min-Chang Shih, Ching-Sham Lu, "Pneumatic servomotor drive a ball-screw with fuzzy-sliding mode position control", Proc. of IEEE conf. on Systems, Man and Cybernetics, pp. 50-54, 1993.
  9. W. Backe, "The application of servo-pneumatic drives for flexible mechanical handling techniques", Robotics, vol. 2, no. 1, pp. 45-56, 1986. DOI: http://dx.doi.org/10.1016/0167-8493(86)90021-5
  10. S. R. Pandian, Y. Hayakawa, F. Takemura, S. Kawamura, "Control performance of an air motor -Can air motors replaces electric motors?", Proc. of IEEE Int'l Conf. on Robotics and Automation, pp. 518-524, 1999.
  11. A. K. Paul, J. K. Mishra, and M. G. Radke, "Reduced order sliding mode control for pneumatic actuator", IEEE Trans. on control systems Technology, vol. 2, no. 3, pp. 271-276, 1994. DOI: http://dx.doi.org/10.1109/87.317984
  12. S. R. Pandian, Y. Hayakawa, Y. Kanazawa, Y. Kamoyama and S. Kawamura, "Practical design of a sliding mode controller for pneumatic actuators", Trans. of ASME, vol. 119, no. 4, pp. 666-674, 1997. https://doi.org/10.1115/1.2824170
  13. J. Song and Y. Ishida, "Robust tracking controller design for pneumatic servo system", Int. J. of Engineering Science, vol. 35, no. 10-11, pp. 905-920, 1997. DOI: http://dx.doi.org/10.1016/S0020-7225(97)00037-2
  14. S. Drakunov, G. D. Hanchin, W. C. Su and U. Ozguner, "Nonlinear control of a rodless pneumatic servoactuator, or sliding modes versus coulomb friction", Automatica, vol. 33, no. 7, pp. 1401-1408, 1997. DOI: http://dx.doi.org/10.1016/S0005-1098(97)00015-0
  15. Wu-Chung Su, Chun-Yen Kuo, "Variable structure control of a rodless pneumatic servoactuator with discontinuous sliding surfaces", Proc. of American Control Conference, pp. 1617-1621, 2000.
  16. M. Bouri, D. Thomasset, "Sliding control of an electropneumatic actuator using an integral switching surface", IEEE Trans. on Control Systems Technology, vol. 9, no. 2, pp. 368-375, 2001. DOI: http://dx.doi.org/10.1109/87.911388
  17. J. Tang, G. Walker, "Variable structure control of a pneumatic actuator", Trans. of ASME, J. of Dynamic Systems, Measurement, and Control, vol. 117, no. 1, pp. 88-92, 1995. DOI: http://dx.doi.org/10.1115/1.2798526
  18. B. W. Surgenor and N. D. Vaughan, "Continuous sliding mode control of a pneumatic actuator", Trans. of ASME, J. of Dynamic Systems, Measurement, and Control, vol. 119, no. 3, pp. 578-580, 1997. DOI: http://dx.doi.org/10.1115/1.2801298
  19. Geun-Mook kim, E-Sok Kang,, "Development of a Pneumatically Driven 6 DOF Driving Simulator", Journal of The Korea Acamemica-Industrial cooperation Society, Vol.13,No.12, pp.6090-6097, 2013. DOI: http://dx.doi.org/10.5762/KAIS.2013.14.12.6090