DOI QR코드

DOI QR Code

A Study on the Thermal Oxidation and Wettability of Lead-free Solders of Sn-Ag-Cu and Sn-Ag-Cu-In

  • Lee, Hyunbok (Department of Polymer Science and Engineering, University of Massachusetts) ;
  • Cho, Sang Wan (Department of Physics, Yonsei University)
  • Received : 2014.10.15
  • Accepted : 2014.11.25
  • Published : 2014.11.30

Abstract

The surface oxidation mechanism of lead-free solder alloys has been investigated with multiple reflow using X-ray photoelectron spectroscopy. It was found that the solder surface of Sn-Ag-Cu-In solder alloy is surrounded by a thin $InO_x$ layer after reflow process; this coating protects the metallic surface from thermal oxidation. Based on this result, we have performed a wetting balance test at various temperatures. The Sn-Ag-Cu-In solder alloy shows characteristics of both thermal oxidation and wetting balance better than those of Sn-Ag-Cu solder alloy. Therefore, Sn-Ag-Cu-In solder alloy is a good candidate to solve the two problems of easy oxidation and low wettability, which are the most critical problems of Pb-free solders.

Keywords

References

  1. J. Görlich, G. Schmitz and K.N. Tu: Appl. Phys. Lett., 86, 053106 (2005). https://doi.org/10.1063/1.1852724
  2. K.N. Tu, A.M. Gusak and M. Li: J. Appl. Phys., 93, 1335 (2003). https://doi.org/10.1063/1.1517165
  3. M.C. Liew, I. Ahmad, L.M. Lee, M.F.M. Nazeri and H. Haliman: Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 43, 3742-47 (2012). https://doi.org/10.1007/s11661-012-1194-5
  4. S.V. Sattiraju, B. Dang, R.W. Johnson, L. Yali, J.S. Smith and M.J. Bozack: IEEE T. Electron. Pack., 25, 168-84 (2002). https://doi.org/10.1109/TEPM.2002.801651
  5. K.-O. Lee, J.W. Morris Jr. and F. Hua: Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 41, 1805-14 (2010). https://doi.org/10.1007/s11661-010-0214-6
  6. K. Zeng and K.N. Tu: Mater. Sci. Eng. R-Rep., 38, 55-105 (2002). https://doi.org/10.1016/S0927-796X(02)00007-4
  7. Y.C. Hu, Y.H. Lin, C.R. Kao and K.N. Tu: J. Mater. Res., 18, 2544-48 (2003). https://doi.org/10.1557/JMR.2003.0355
  8. J.W. Nah, K.W. Paik, J.O. Suh and K.N. Tu: J. Appl. Phys., 94, 7560 (2003). https://doi.org/10.1063/1.1628388
  9. T.L. Shao, Y.H. Chen, S.H. CHiu and C. Chen: J. Appl. Phys., 96, 4518 (2004). https://doi.org/10.1063/1.1788837
  10. H. Wang, C. Bruynseraede and K. Maex: Appl. Phys. Lett., 84, 517 (2004). https://doi.org/10.1063/1.1644048
  11. H. Gan and K.N. Tu: J. Appl. Phys., 97, 063514 (2005). https://doi.org/10.1063/1.1861151
  12. J.W. Nah, J.O. Suh and K.N. Tu: J. Appl. Phys., 98, 013715 (2005). https://doi.org/10.1063/1.1949719
  13. S.W. Cho, K. Han, Y. Yi, S.J. Kang, K.-H. Yoo, K. Jeong and C.-N. Whang: Adv. Eng. Mater., 8, 111-14 (2006). https://doi.org/10.1002/adem.200500188
  14. Y. Yi, S. Cho, M. Noh, C.-N. Whang, K. Jeong and H.-J. Shin: Jap. J. Appl. Phys., 44, 861-64 (2005). https://doi.org/10.1143/JJAP.44.861
  15. K.S. Kim, S.H. Huh and K. Suganuma: J. Alloys Compd., 352, 226-36 (2003). https://doi.org/10.1016/S0925-8388(02)01166-0
  16. C. Lea: Solder. Surf. Mt. Tech., 2, 8-13 (1990). https://doi.org/10.1108/eb037701
  17. I. Artaki, A.M. Jackson and P.T. Vianco: Solder. Surf. Mt. Tech., 7, 27-32 (1995). https://doi.org/10.1108/eb037896
  18. I. Artaki, A.M. Jackson and P.T. Vianco: J. Electron. Mater., 23, 757-64 (1994). https://doi.org/10.1007/BF02651370

Cited by

  1. Electron Microscopy of the Tin-oxide Nanolayer Formed on the Surface of Sn-Ag-Cu Alloys vol.196, 2017, https://doi.org/10.1088/1757-899X/196/1/012006