Abstract
Recently, mathematical reasoning has been considered as one of the most important mathematical thinking abilities to be established in school mathematics. This study is to investigate the mathematical problems on the content of 'Set and Statement' and 'Sequences' in high school according to the four types of reasoning, namely Making Conjectures, Investigating Conjectures, Developing Arguments, and Evaluating Arguments. Those types of reasoning were reconstructed based on Johnson's six types of reasoning suggested in 2010. The content is dealt with in 'Mathematics II' textbook developed and published according to the mathematics curriculum revised in 2009. The subject of this study is nine types of textbooks and mathematical problems in the textbook are consisted of as two parts of 'general problem' and 'evaluation problem'. Finally, the results of this study can be summarized as follow: First, it is stated that students be establishing a logical justification activity, the highest reasoning activity through dealing with the 'Developing Arguments' type of problems affluently in both 'Set and Statement' and 'Sequence' chapters of Mathematics II textbook. Second, it is mentioned that students have an chance to investigate conjectures and develop logical arguments in 'Set and Statement' chapter of Mathematics II textbook. In particular, whereas they have an chance to investigate conjectures and also develop arguments in 'Statement', the 'Set' chapter is given only an opportunity of developing arguments. Third, students are offered on an opportunity of reasoning that can make conjectures and develop logical arguments in 'Sequences' chapter of Mathematics II textbook. Fourth, Mathematics II textbook are geared to do activities that could evaluate arguments while dealing with the problems relevant to 'mathematical process' included in 'general problem'.
본 연구에서는 수학에서 추론의 중요성과 그 역할에 의미를 두고, 고등학교 수학 내용(문제)의 분석을 통해 학생들이 제공받는 추론의 유형이 얼마나 높은 수준, 즉 다양한 것인지에 대해 살펴보고자 한다. 현재, '수학 II' 교과목은 2009 개정에 따른 교과목들 중에서 '수학 I' 교과목을 이수한 후 선택하는 것(신이섭, 2011)으로, 중등 수학에서 가장 심도 있는 학습 내용을 다룬다고 볼 수 있다. 이러한 점에 감안하여 본 연구에서는 '수학 II' 교과목의 내용을 중심으로 Johnson, et al.(2010)의 여섯 가지 추론 유형을 재구성하여 이를 바탕으로 현행 9종의 모든 교과서에 수록된 추론 문제의 정도(비율) 및 유형을 파악하고자 한다. 이로써, 학생들에게 어느 정도의 추론 활동의 기회가 제공되고 있는지 살펴보고, 수학 수업에서의 추론 능력 신장의 긍정적 가능성을 가늠해 보고자 한다.