DOI QR코드

DOI QR Code

A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing

효율적인 데이터베이스 마케팅을 위한 데이터마이닝 전처리도구에 관한 연구

  • Lee, Jun-Seok (Dept. of Business Administration, Dongnam Health University)
  • Received : 2014.09.16
  • Accepted : 2014.11.20
  • Published : 2014.11.28

Abstract

This paper is to construction of the data mining preprocessing tool for efficient database marketing. We compare and evaluate the often used data mining tools based on the access method to local and remote databases, and on the exchange of information resources between different computers. The evaluated preprocessing of data mining tools are Answer Tree, Climentine, Enterprise Miner, Kensington, and Weka. We propose a design principle for an efficient system for data preprocessing for data mining on the distributed networks. This system is based on Java technology including EJB(Enterprise Java Beans) and XML(eXtensible Markup Language).

효율적인 데이터베이스 마케팅을 위하여 고객들을 세분화하고, 새로운 지식을 탐색할 수 있는 데이터마이닝의 필요성이 증대되고 있다. 데이터마이닝 도구를 구축하기 위해서는 단계별 구현이 요구되어 지는데, 본 연구에서는 데이터마이닝을 위한 분산 환경에 적응 가능한 데이터 전처리 도구를 구성하였다. 기존의 데이터마이닝 도구인 앤서 트리, 클레멘타인, 엔터프라이즈 마이너, 캔싱턴, 웨카의 전처리 부분을 고찰하고, 분산 환경에서 효율적으로 사용할 수 있는 데이터 마이닝 전처리 도구를 구성하였다. 새로이 제안된 시스템은 엔터프라이즈 자바 빈즈와 XML을 기반으로 하였다.

Keywords

References

  1. T. H. Hong, E. M. Kim, Predicting the Response of Segmented Customers for the Promotion Using Data Mining, Information Systems Review, Vol. 12, No. 2, pp. 75-88, 2010.
  2. J. M. Lee, J. S. Park, J. B. Jang, An Investigation of the Factors Influence Database Marketing Sophistication, Journal of the Korea Industrial Information System Society, Vol. 6, No. 3, pp. 95-106, 2001.
  3. C. Ordonez, Z. Chen, Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis, IEEE Transactions on Knowledge & Data Engineering. Vol. 24, Issue 4, pp 678-691, 2012. https://doi.org/10.1109/TKDE.2011.16
  4. Y. H. Jung, S. H. Eo, H. S. Moon, H. J. Cho, A Study for Improving the Performance of Data Mining Using Ensemble Techniques, Communications of the Korean statistical society, Vol. 17, No 4, pp. 561-574, 2010. https://doi.org/10.5351/CKSS.2010.17.4.561
  5. J. A. Berry & G. Linoff, Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, John and Sons, 2004.
  6. M. Y. Huh, K. R. Song, The Prospect of the Structure of Data Mining Solution in the Future, International Conference on Data Mining, Visualization and Statistical System, KSS, 2000.
  7. Y. G. Choi, A Study for Improving the Performance of Data Mining Using Ensemble Techniques, Journal of Information Technology Applications & Management, Vol. 15, No. 2, pp. 1-14, 2008.
  8. X. Wu, X. Zhu, G. Q. Wu, IEEE Transactions on Knowledge & Data Engineering. Vol. 26, Issue 1, pp 97-107, 2014. https://doi.org/10.1109/TKDE.2013.109

Cited by

  1. Optimized growth curve for estimating performance measurement baseline depended on domestic construction facility type 2017, https://doi.org/10.1007/s12205-017-0180-2