DOI QR코드

DOI QR Code

Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM

  • 투고 : 2013.02.14
  • 심사 : 2014.04.21
  • 발행 : 2014.11.25

초록

In this paper, nonlinear vibration and post-buckling analysis of beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to thermo-mechanical loading are studied. The thermo-mechanical material properties of the beams are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and to be temperature-dependent. The assumption of a small strain, moderate deformation is used. Based on Euler-Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this PDE problem which has quadratic and cubic nonlinearities is simplified into an ODE problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the influences of thermal effect, the effect of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogenity are presented for future references. Results show that the thermal loading has a significant effect on the vibration and post-buckling response of FG beams.

키워드

참고문헌

  1. Ait Atmane, H., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoidfunctionally graded beams with varying cross-section", Steel Compos. Struct., Int. J., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489
  2. Aydogdu, M. (2007), "Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions", Compos. Sci. Technol., 67(6), 1069-1104.
  3. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  4. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  5. Carlos, E.N.M., Ma'rio, E.S.S. and Odulpho, G.P.B. (2004), "Nonlinear normal modes of a simply supported beam: continuous system and finite element models", Comput. Struct., 82(31-32), 2683-2691. https://doi.org/10.1016/j.compstruc.2004.07.007
  6. Emam, S.A. (2009), "A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams", Compos. Struct., 90(2), 247-253. https://doi.org/10.1016/j.compstruct.2009.03.020
  7. Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos. Struct., 88(4), 636-642. https://doi.org/10.1016/j.compstruct.2008.06.006
  8. Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Europ. J. Mech. A/Solids, 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
  9. Fallah, A., Shahsavari Alavijeh, H., Pasharavesh, A. and Aghdam, M.M. (2011), "Large amplitude thermomechanical vibration analysis of asymmetrically laminated composite beams", Key Eng. Materials, 471-472, 745-750. https://doi.org/10.4028/www.scientific.net/KEM.471-472.745
  10. Fang, W. and Wickert, J.A. (1994), "Postbuckling of micromachined beams", J. Micromach. Microeng., 4(3), 116-122. https://doi.org/10.1088/0960-1317/4/3/004
  11. Gunda, J.B., Gupta, R.K., Janardhan, G.R. and Rao, G.V. (2010), "Large amplitude vibration analysis of composite beams: simple closed-form solutions", Compos. Struct., 93(2), 870-879.
  12. Guo, Q. and Zhong, H. (2004), "Nonlinear vibration analysis of beams by a spline-based differential quadrature method", J. Sound Vib., 269, 413-420. https://doi.org/10.1016/S0022-460X(03)00328-6
  13. Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2009), "Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams", Finite Elem. Anal. Des., 45(10), 624-631. https://doi.org/10.1016/j.finel.2009.04.001
  14. Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010a), "Thermal post-buckling analysis of slender columns using the concept of coupled displacement field", Int. J. Mech. Sci., 52(4), 590-594. https://doi.org/10.1016/j.ijmecsci.2009.12.005
  15. Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010b), "Post-buckling analysis of composite beams: simple and accurate closed-form expressions", Compos. Struct., 92(8), 1947-1956. https://doi.org/10.1016/j.compstruct.2009.12.010
  16. Hatsunaga, H. (2001), "Vibration and buckling of multilayered composite beams according to higher order deformation theories", J. Sound Vib., 246(1), 47-62. https://doi.org/10.1006/jsvi.2000.3627
  17. He, J.H. (1999), "Variational iteration method - a kind of non-linear analytical technique: Some examples", Int. J. Non-Linear Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
  18. Jun, L., Hongxing, H. and Rongying, S. (2008), "Dynamic stiffness analysis for free vibrations of axially loaded laminated composite beams", Compos. Struct., 84(1), 87-98. https://doi.org/10.1016/j.compstruct.2007.07.007
  19. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1
  20. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., Int. J., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
  21. Lacarbonara, W. (1997), "A theoretical and experimental investigation of nonlinear vibrations of buckled beams", M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
  22. Ma, L.S. and Lee, D.W. (2011), "A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading", Compos. Struct., 92(2), 831-842.
  23. Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlinear Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
  24. Nayfeh, A.H. and Emam, S.A. (2008), "Exact solutions and stability of the postbuckling configurations of beams", Nonlinear Dyn., 54(4), 395-408. https://doi.org/10.1007/s11071-008-9338-2
  25. Noda, N. (1991), "Thermal stresses in materials with temperature-dependent properties", Appl. Mech. Rev., 44(9), 383-397. https://doi.org/10.1115/1.3119511
  26. Pirbodaghi, T., Ahmadian, M.T. and Fesanghary, M. (2009), "On the homotopy analysis method for nonlinear vibration of beams", Mech. Res. Commun., 36(2), 143-148. https://doi.org/10.1016/j.mechrescom.2008.08.001
  27. Sapountzakis, E.J. and Tsiatas, G.C. (2007), "Elastic flexural buckling analysis of composite beams of variable cross-section by bem", Eng. Struct., 29(5), 675-681. https://doi.org/10.1016/j.engstruct.2006.06.010
  28. Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
  29. Tanigawa, Y. (1995), "Some basic thermoelastic problems for nonhomogeneous structural materials", Appl. Mech. Rev., 48(6), 287-300. https://doi.org/10.1115/1.3005103
  30. Vaz, M.A. and Solano, R.F. (2003), "Postbuckling analysis of slender elastic rods subjected to uniform thermal loads", J. Thermal Stress, 26(9), 847-860. https://doi.org/10.1080/01495730306293
  31. Xie, W.C., Lee, H.P. and Lin, S.P. (2002), "Normal modes of a nonlinear clamped-clamped beam", J. Sound Vib., 250(2), 339-349. https://doi.org/10.1006/jsvi.2001.3918
  32. Yaghoobi, H. and Torabi M. (2013a), "An analytical approach to large amplitude vibration and post-buckling of functionally graded beams rest on non-linear elastic foundation", J. Theor. App. Mech, 51(1), 39-52.
  33. Yaghoobi, H. and Torabi, M. (2013b), "Post-buckling and nonlinear free vibration analysis of geometrically imperfect functionally graded beams resting on nonlinear elastic foundation", Appl. Math. Modelling, 37(18-19), 8324-8340. https://doi.org/10.1016/j.apm.2013.03.037
  34. Ziane, N., Meftah, S.A., Belhadj, H.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Free vibration analysis of thin and thick-walled FGM box beams", Int. J. Mech. Sci., 66, 273-282. https://doi.org/10.1016/j.ijmecsci.2012.12.001

피인용 문헌

  1. Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
  2. A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
  3. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  4. On boundary conditions for thermally loaded FG beams vol.119, 2017, https://doi.org/10.1016/j.ijengsci.2017.06.017
  5. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  6. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  7. Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.969
  8. On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
  9. Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium vol.4, pp.3, 2016, https://doi.org/10.12989/anr.2016.4.3.229
  10. An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
  11. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
  12. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  13. Nonlinear Dynamic Response of an Axially Functionally Graded (AFG) Beam Resting on Nonlinear Elastic Foundation Subjected to Moving Load vol.0, pp.0, 2018, https://doi.org/10.1515/nleng-2018-0051
  14. Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory pp.1521-074X, 2019, https://doi.org/10.1080/01495739.2018.1461042
  15. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2014, https://doi.org/10.12989/sem.2017.63.5.585
  16. An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities vol.13, pp.3, 2014, https://doi.org/10.12989/eas.2017.13.3.255
  17. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2014, https://doi.org/10.12989/scs.2017.25.2.157
  18. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2014, https://doi.org/10.12989/scs.2017.25.6.693
  19. Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
  20. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2014, https://doi.org/10.12989/scs.2018.27.5.599
  21. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2014, https://doi.org/10.12989/anr.2018.6.2.147
  22. A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2014, https://doi.org/10.12989/sem.2018.67.4.369
  23. Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory vol.15, pp.4, 2018, https://doi.org/10.12989/eas.2018.15.4.369
  24. Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory vol.28, pp.1, 2014, https://doi.org/10.12989/was.2019.28.1.049
  25. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  26. A Comprehensive Review on Vibration Analysis of Functionally Graded Beams vol.20, pp.4, 2014, https://doi.org/10.1142/s0219455420300025
  27. A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation vol.34, pp.4, 2014, https://doi.org/10.12989/scs.2020.34.4.511
  28. Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2014, https://doi.org/10.12989/scs.2020.35.2.295
  29. Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers vol.36, pp.1, 2020, https://doi.org/10.12989/scs.2020.36.1.001
  30. Time-dependent analysis of slender, tapered reinforced concrete columns vol.36, pp.2, 2014, https://doi.org/10.12989/scs.2020.36.2.229
  31. Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2014, https://doi.org/10.12989/csm.2020.9.6.499