References
- Ait Atmane, H., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoidfunctionally graded beams with varying cross-section", Steel Compos. Struct., Int. J., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489
- Aydogdu, M. (2007), "Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions", Compos. Sci. Technol., 67(6), 1069-1104.
- Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Carlos, E.N.M., Ma'rio, E.S.S. and Odulpho, G.P.B. (2004), "Nonlinear normal modes of a simply supported beam: continuous system and finite element models", Comput. Struct., 82(31-32), 2683-2691. https://doi.org/10.1016/j.compstruc.2004.07.007
- Emam, S.A. (2009), "A static and dynamic analysis of the postbuckling of geometrically imperfect composite beams", Compos. Struct., 90(2), 247-253. https://doi.org/10.1016/j.compstruct.2009.03.020
- Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos. Struct., 88(4), 636-642. https://doi.org/10.1016/j.compstruct.2008.06.006
- Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Europ. J. Mech. A/Solids, 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
- Fallah, A., Shahsavari Alavijeh, H., Pasharavesh, A. and Aghdam, M.M. (2011), "Large amplitude thermomechanical vibration analysis of asymmetrically laminated composite beams", Key Eng. Materials, 471-472, 745-750. https://doi.org/10.4028/www.scientific.net/KEM.471-472.745
- Fang, W. and Wickert, J.A. (1994), "Postbuckling of micromachined beams", J. Micromach. Microeng., 4(3), 116-122. https://doi.org/10.1088/0960-1317/4/3/004
- Gunda, J.B., Gupta, R.K., Janardhan, G.R. and Rao, G.V. (2010), "Large amplitude vibration analysis of composite beams: simple closed-form solutions", Compos. Struct., 93(2), 870-879.
- Guo, Q. and Zhong, H. (2004), "Nonlinear vibration analysis of beams by a spline-based differential quadrature method", J. Sound Vib., 269, 413-420. https://doi.org/10.1016/S0022-460X(03)00328-6
- Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2009), "Relatively simple finite element formulation for the large amplitude free vibrations of uniform beams", Finite Elem. Anal. Des., 45(10), 624-631. https://doi.org/10.1016/j.finel.2009.04.001
- Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010a), "Thermal post-buckling analysis of slender columns using the concept of coupled displacement field", Int. J. Mech. Sci., 52(4), 590-594. https://doi.org/10.1016/j.ijmecsci.2009.12.005
- Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010b), "Post-buckling analysis of composite beams: simple and accurate closed-form expressions", Compos. Struct., 92(8), 1947-1956. https://doi.org/10.1016/j.compstruct.2009.12.010
- Hatsunaga, H. (2001), "Vibration and buckling of multilayered composite beams according to higher order deformation theories", J. Sound Vib., 246(1), 47-62. https://doi.org/10.1006/jsvi.2000.3627
- He, J.H. (1999), "Variational iteration method - a kind of non-linear analytical technique: Some examples", Int. J. Non-Linear Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
- Jun, L., Hongxing, H. and Rongying, S. (2008), "Dynamic stiffness analysis for free vibrations of axially loaded laminated composite beams", Compos. Struct., 84(1), 87-98. https://doi.org/10.1016/j.compstruct.2007.07.007
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "An analytical study on the nonlinear vibration of functionally graded beams", Meccanica, 45(6), 743-752. https://doi.org/10.1007/s11012-009-9276-1
- Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., Int. J., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
- Lacarbonara, W. (1997), "A theoretical and experimental investigation of nonlinear vibrations of buckled beams", M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
- Ma, L.S. and Lee, D.W. (2011), "A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading", Compos. Struct., 92(2), 831-842.
- Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlinear Sci. Numer. Simul., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
- Nayfeh, A.H. and Emam, S.A. (2008), "Exact solutions and stability of the postbuckling configurations of beams", Nonlinear Dyn., 54(4), 395-408. https://doi.org/10.1007/s11071-008-9338-2
- Noda, N. (1991), "Thermal stresses in materials with temperature-dependent properties", Appl. Mech. Rev., 44(9), 383-397. https://doi.org/10.1115/1.3119511
- Pirbodaghi, T., Ahmadian, M.T. and Fesanghary, M. (2009), "On the homotopy analysis method for nonlinear vibration of beams", Mech. Res. Commun., 36(2), 143-148. https://doi.org/10.1016/j.mechrescom.2008.08.001
- Sapountzakis, E.J. and Tsiatas, G.C. (2007), "Elastic flexural buckling analysis of composite beams of variable cross-section by bem", Eng. Struct., 29(5), 675-681. https://doi.org/10.1016/j.engstruct.2006.06.010
- Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
- Tanigawa, Y. (1995), "Some basic thermoelastic problems for nonhomogeneous structural materials", Appl. Mech. Rev., 48(6), 287-300. https://doi.org/10.1115/1.3005103
- Vaz, M.A. and Solano, R.F. (2003), "Postbuckling analysis of slender elastic rods subjected to uniform thermal loads", J. Thermal Stress, 26(9), 847-860. https://doi.org/10.1080/01495730306293
- Xie, W.C., Lee, H.P. and Lin, S.P. (2002), "Normal modes of a nonlinear clamped-clamped beam", J. Sound Vib., 250(2), 339-349. https://doi.org/10.1006/jsvi.2001.3918
- Yaghoobi, H. and Torabi M. (2013a), "An analytical approach to large amplitude vibration and post-buckling of functionally graded beams rest on non-linear elastic foundation", J. Theor. App. Mech, 51(1), 39-52.
- Yaghoobi, H. and Torabi, M. (2013b), "Post-buckling and nonlinear free vibration analysis of geometrically imperfect functionally graded beams resting on nonlinear elastic foundation", Appl. Math. Modelling, 37(18-19), 8324-8340. https://doi.org/10.1016/j.apm.2013.03.037
- Ziane, N., Meftah, S.A., Belhadj, H.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Free vibration analysis of thin and thick-walled FGM box beams", Int. J. Mech. Sci., 66, 273-282. https://doi.org/10.1016/j.ijmecsci.2012.12.001
Cited by
- Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
- A computational shear displacement model for vibrational analysis of functionally graded beams with porosities vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.369
- Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
- On boundary conditions for thermally loaded FG beams vol.119, 2017, https://doi.org/10.1016/j.ijengsci.2017.06.017
- An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.969
- On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
- Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium vol.4, pp.3, 2016, https://doi.org/10.12989/anr.2016.4.3.229
- An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
- Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- Nonlinear Dynamic Response of an Axially Functionally Graded (AFG) Beam Resting on Nonlinear Elastic Foundation Subjected to Moving Load vol.0, pp.0, 2018, https://doi.org/10.1515/nleng-2018-0051
- Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory pp.1521-074X, 2019, https://doi.org/10.1080/01495739.2018.1461042
- A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2014, https://doi.org/10.12989/sem.2017.63.5.585
- An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities vol.13, pp.3, 2014, https://doi.org/10.12989/eas.2017.13.3.255
- A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2014, https://doi.org/10.12989/scs.2017.25.2.157
- An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2014, https://doi.org/10.12989/scs.2017.25.6.693
- Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
- A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2014, https://doi.org/10.12989/scs.2018.27.5.599
- A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2014, https://doi.org/10.12989/anr.2018.6.2.147
- A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2014, https://doi.org/10.12989/sem.2018.67.4.369
- Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory vol.15, pp.4, 2018, https://doi.org/10.12989/eas.2018.15.4.369
- Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory vol.28, pp.1, 2014, https://doi.org/10.12989/was.2019.28.1.049
- A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
- A Comprehensive Review on Vibration Analysis of Functionally Graded Beams vol.20, pp.4, 2014, https://doi.org/10.1142/s0219455420300025
- A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation vol.34, pp.4, 2014, https://doi.org/10.12989/scs.2020.34.4.511
- Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2014, https://doi.org/10.12989/scs.2020.35.2.295
- Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers vol.36, pp.1, 2020, https://doi.org/10.12989/scs.2020.36.1.001
- Time-dependent analysis of slender, tapered reinforced concrete columns vol.36, pp.2, 2014, https://doi.org/10.12989/scs.2020.36.2.229
- Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2014, https://doi.org/10.12989/csm.2020.9.6.499