DOI QR코드

DOI QR Code

Study of complex nonlinear vibrations by means of accurate analytical approach

  • Bayat, Mahmoud (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University) ;
  • Pakar, Iman (Young Researchers and Elites Club, Mashhad Branch, Islamic Azad University) ;
  • Bayat, Mahdi (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University)
  • Received : 2014.03.24
  • Accepted : 2014.08.22
  • Published : 2014.11.25

Abstract

In the current study, we consider a new class of analytical periodic solution for free nonlinear vibration of mechanical systems. Hamiltonian approach is applied to analyze nonlinear problems which occur in dynamics. The proposed method doesn't have the limitations of the classical methods and leads us to a high accurate solution by only one iteration. Two well known examples are studied to show the convenience and effectiveness of this approach. Runge-Kutta's algorithm is also applied and the results of it are compared with the Hamiltonian approach. High accuracy of the proposed approach reveals that the Hamiltonian approach can be very useful for other nonlinear practical problems in engineering.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates restingon nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  2. Alicia, C, Hueso, J.L., Martinez, E. and Torregros, J.R. (2010), "Iterative methods for use with nonlinear discrete algebraic models", Math. Comput., 52(7-8), 1251-1257.
  3. Bayat, M. and Abdollahzadeh, G. (2011), "On the effect of the near field records on the steel braced frames equipped with energy dissipating devices", Latin Am. J. Solid. Struct., 8(4), 429-443. https://doi.org/10.1590/S1679-78252011000400004
  4. Bayat, M. and Pakar, I. (2012), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., Int. J., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
  5. Bayat, M. and Pakar, I. (2013a), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
  6. Bayat, M. and Pakar, I. (2013b), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420 . https://doi.org/10.1007/s11803-013-0182-0
  7. Bayat, M., Pakar, I. and Domaiirry, G. (2012), "Recent developments of Some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Latin Am. J. Solid. Struct., 9(2), 145-234 .
  8. Bayat, M., Pakar, I. and Emadi, A. (2013a), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., Int. J., 48(6), 823-831 https://doi.org/10.12989/sem.2013.48.6.823
  9. Bayat, M., Pakar, I. and Bayat, M. (2013b), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., Int. J., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
  10. Bayat, M., Bayat, M. and Pakar, I. (2014a), "The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading", Steel Compos. Struct., Int. J., 17(1 ), 123-131. https://doi.org/10.12989/scs.2014.17.1.123
  11. Bayat, M., Pakar, I. and Bayat, M. (2014b), "An accurate novel method for solving nonlinear mechanical systems", Struct. Eng. Mech., Int. J., 51(3), 519-530. https://doi.org/10.12989/sem.2014.51.3.519
  12. Bayat, M., Bayat, M. and Pakar, I. (2014c), "Forced nonlinear vibration by means of two approximate analytical solutions", Struct. Eng. Mech., Int. J., 50(6), 853-862 https://doi.org/10.12989/sem.2014.50.6.853
  13. Bayat, M, Pakar, I. and Cveticanin, L. (2014d), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: An analytical approach", Mech. Mach. Theory, 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
  14. Bayat, M., Pakar, I. and Cveticanin, L. (2014e), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
  15. Bayat, M., Bayat, M. and Pakar, I. (2014f), "Nonlinear vibration of an electrostatically actuated microbeam", Latin Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
  16. Bayat, M., Bayat, M. and Pakar, I. (2014g), "Accurate analytical solutions for nonlinear oscillators with discontinuous", Struct. Eng. Mech., Int. J., 51(2), 349-360. https://doi.org/10.12989/sem.2014.51.2.349
  17. Kuo, B.L. and Lo, C.Y. (2009), "Application of the differential transformation method to the solution of a damped system with high nonlinearity", Nonlinear Anal., 70(4), 1732-1737. https://doi.org/10.1016/j.na.2008.02.056
  18. Dehghan, M. and Tatari, M. (2008), "Identifying an unknown function in a parabolic equation with over specified data via He's variational iteration method", Chaos Soliton. Fract., 36(1), 157-166. https://doi.org/10.1016/j.chaos.2006.06.023
  19. Jamshidi, N. and Ganji, D.D. (2010), "Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire", Curr. Appl. Phys., 10(2), 484-486. https://doi.org/10.1016/j.cap.2009.07.004
  20. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillators", Mech. Res. Comm., 29(2), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
  21. He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Soliton. Fract., 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
  22. He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlinear Sci. Numer. Simul., 9(2), 211-212.
  23. He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374 (23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
  24. Liu, Z.F., Yin, Y.Y., Wang, F., Zhao, Y.S. and Cai, L.G. (2013), "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., Int. J., 48(5), 697-709. https://doi.org/10.12989/sem.2013.48.5.697
  25. Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Curr. Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
  26. Odibat, Z., Momani, S. and Suat Erturk, V. (2008), "Generalized differential transform method: Application to differential equations of fractional order", Appl. Math. Comput., 197(2) , 467-477. https://doi.org/10.1016/j.amc.2007.07.068
  27. Pakar, I. and Bayat, M. (2013), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., Int. J., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
  28. Pakar, I., Bayat, M. and Bayat, M. (2011), "Analytical evaluation of the nonlinear vibration of a solid circular sector object", Int. J. Phys. Sci., 6(30), 6861-6866.
  29. Pakar, I., Bayat, M. and Bayat, M. (2014a), "Nonlinear vibration of thin circular sector cylinder: An analytical approach", Steel Compos. Struct., Int. J., 17(1),133-143. https://doi.org/10.12989/scs.2014.17.1.133
  30. Pakar, I., Bayat, M. and Bayat, M. (2014b), "Accurate periodic solution for nonlinear vibration of thick circular sector slab", Steel Compos. Struct., Int. J., 16(5), 521-531. https://doi.org/10.12989/scs.2014.16.5.521
  31. Rajasekaran, S. (2013), "Free vibration of tapered arches made of axially functionally graded materials", Struct. Eng. Mech., Int. J., 45(4), 569-594. https://doi.org/10.12989/sem.2013.45.4.569
  32. Shahidi, M., Bayat, M., Pakar, I. and Abdollahzadeh, G.R. (2011), "Solution of free non-linear vibration of beams", Int. J. Phys. Sci., 6(7),1628-1634.
  33. Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
  34. Wu, G, (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Model., 54(9-10), 2104-2108. https://doi.org/10.1016/j.mcm.2011.05.018
  35. Xu, L. (2010), "Application of Hamiltonian approach to an oscillation of a mass attached to a stretched elastic wire", Math. Comput. Appl., 15 (5), 901-906.
  36. Xu, L. and Zhang, N. (2009), "Variational approach next term to analyzing catalytic reactions in short monoliths", Comput. Math. Appl., 58(11-12), 2460-2463. https://doi.org/10.1016/j.camwa.2009.03.035
  37. Zeng, D.Q. and Lee, Y.Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlinear Sci. Numer. Simul., 10 (10), 1361-1368.

Cited by

  1. Nonlinear vibration of conservative oscillator's using analytical approaches vol.59, pp.4, 2016, https://doi.org/10.12989/sem.2016.59.4.671