과제정보
연구 과제 주관 기관 : NRF (National Research Foundation of Korea)
참고문헌
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2013), "Static analysis of nanobeams using nonlocal FEM", J. Mech. Sci. Technol., 27(7), 2035-2041. https://doi.org/10.1007/s12206-013-0212-x
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Budynas, R.G. and Nisbett, J.K. (2010), Shigley's Mechanical Engineering Design, McGraw-Hill, New York, NY, USA.
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam- a paradox solved", Nanotechnology, 19(34), 345703. https://doi.org/10.1088/0957-4484/19/34/345703
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro or nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013b), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
- Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1972b), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2013), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589. https://doi.org/10.1016/j.compstruct.2012.08.024
- Hein, H. and Feklistova, L. (2011), "Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets", Eng. Struct., 33(12), 3696-3701. https://doi.org/10.1016/j.engstruct.2011.08.006
- Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound. Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
- Kang, Y.A. and Li, X.F. (2009), "Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force", Int. J. Non-Linear. Mech., 44(6), 696-703. https://doi.org/10.1016/j.ijnonlinmec.2009.02.016
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound. Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Li, Y., Zhang, H. and Zhang, N. (2005), "Stress analysis of functionally graded beam using effective principle axes", Int. J. Mech. Mater. Des., 2(3-4), 157-164. https://doi.org/10.1007/s10999-006-9000-4
- Li, X.F., Wang, B.L. and Han, J.C. (2010), "A higher-order theory for static and dynamic analyses of functionally graded beams", Arch. Appl. Mech., 80(10), 1197-1212. https://doi.org/10.1007/s00419-010-0435-6
- Nakamura, T., Wang, T. and Sampath, S. (2000), "Determination of properties of graded materials by inverse analysis and instrumented indentation", Acta. Mater., 48(17), 4293-4306. https://doi.org/10.1016/S1359-6454(00)00217-2
- Nie, G.J., Zhong, Z. and Chen, S. (2013), "Analytical solution for a functionally graded beam with arbitrary graded material properties", Compos. Pt. B-Eng., 44(1), 274-282. https://doi.org/10.1016/j.compositesb.2012.05.029
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
- Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E, 42(7), 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
- Rajasekaran, S. (2013), "Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods", Appl. Math. Model., 37(6), 4440-4463. https://doi.org/10.1016/j.apm.2012.09.024
- Reddy, J.N. (1999), Theory and Analysis of Elastic Plates, Taylor & Francis, Philadelphia, PA, USA
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, New York, NY, USA.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
- Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Pt. B-Eng., 42(4), 801-808.
- Shahba, A., Attarnejad, R. and Hajilar, S. (2013), "A mechanical-based solution for axially functionally graded tapered Euler-Bernoulli beams", Mech. Adv. Mater. Struct., 20(8), 696-707. https://doi.org/10.1080/15376494.2011.640971
- Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Comput. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Taeprasartsit, S. (2012), "A buckling analysis of perfect and imperfect dunctionally graded columns", J. Mater. Des. Appl., 226(1), 16-33.
- Uymaz, B. (2013), "Forced vibration analysis of functionally graded beams using nonlocal elasticity", Compos. Struct., 105, 227-239. https://doi.org/10.1016/j.compstruct.2013.05.006
- Wang, L. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B., 71, 195412. https://doi.org/10.1103/PhysRevB.71.195412
- Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401
- Ying, A. K., Li, X. F. (2009), "Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force", Int. J. Non-Linear. Mech., 44(6), 696-703. https://doi.org/10.1016/j.ijnonlinmec.2009.02.016
- Zhang, Y.Y., Wang, C.M. and Challamel, N. (2010), "Bending, buckling, and vibration of micro nanobeams by hybrid nonlocal beam model", J. Eng. Mech., 136(5), 562-574. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000107
- Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023
- Zhu, H. and Sankar, B.V. (2004), "A combined Fourier series-Galerkin method for the analysis of functionally graded beams", J. Appl. Mech., 71(3), 421-424. https://doi.org/10.1115/1.1751184
피인용 문헌
- Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory 2017, https://doi.org/10.1080/15376494.2017.1329467
- A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation vol.326, 2017, https://doi.org/10.1016/j.cma.2017.07.024
- Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium 2018, https://doi.org/10.1177/0954406217713518
- A review of continuum mechanics models for size-dependent analysis of beams and plates vol.177, 2017, https://doi.org/10.1016/j.compstruct.2017.06.040
- Nonlocal static analysis of a functionally graded material curved nanobeam 2018, https://doi.org/10.1080/15376494.2017.1285463
- Measurement Model for Young's Modulus of Axially Functionally Graded Materials vol.748, 2017, https://doi.org/10.4028/www.scientific.net/KEM.748.391
- Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field vol.40, pp.5, 2017, https://doi.org/10.1080/01495739.2016.1254076
- Nonlinear dynamics of contact interaction of a size-dependent plate supported by a size-dependent beam vol.28, pp.5, 2018, https://doi.org/10.1063/1.5022854
- Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams vol.23, pp.3, 2014, https://doi.org/10.12989/scs.2017.23.3.339
- Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions vol.25, pp.1, 2017, https://doi.org/10.12989/scs.2017.25.1.067
- Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory vol.26, pp.6, 2014, https://doi.org/10.12989/scs.2018.26.6.663
- Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.371
- Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2014, https://doi.org/10.12989/scs.2018.28.1.013
- Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory vol.28, pp.6, 2018, https://doi.org/10.12989/scs.2018.28.6.749
- Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories vol.74, pp.2, 2020, https://doi.org/10.12989/sem.2020.74.2.175
- On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2014, https://doi.org/10.12989/scs.2021.38.5.533
- A review of size-dependent continuum mechanics models for micro- and nano-structures vol.170, pp.None, 2022, https://doi.org/10.1016/j.tws.2021.108562