DOI QR코드

DOI QR Code

Visualization and interpretation of cancer data using linked micromap plots

  • Park, Se Jin (Department of Statistics, Chonbuk National University) ;
  • Ahn, Jeong Yong (Department of Statistics (Institute of Applied Statistics), Chonbuk National University)
  • 투고 : 2014.08.26
  • 심사 : 2014.10.05
  • 발행 : 2014.11.30

초록

The causes of cancer are diverse, complex, and only partially understood. Many factors including health behaviors, socioeconomic environments and geographical locations can directly damage genes or combine with existing genetic faults within cells to cause cancerous mutations. Collecting the cancer data and reporting the statistics, therefore, are important to help identify health trends and establish normal health changes in geographical areas. In this article, we analyzed cancer data and demon-strated how spatial patterns of the age-standardized rate and health indicators can be examined visually and simultaneously using linked micromap plots. As a result of data analysis, the age-standardized rate has positive correlativity with thyroid and breast cancer, but the rate has negative correlativity with smoking and drinking. In addition, the regions with high age-standardized rate are located in southwest and the areas of high population density while the standardized mortality ratio is higher in southwest and northeast where there are lots of rural areas.

키워드

참고문헌

  1. Anand, P., Kunnumakkara, A. B., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B. and Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25, 2097-2116. https://doi.org/10.1007/s11095-008-9661-9
  2. Carr, D. B. and Pickle, L. W. (2010). Visualizing data patterns with micromaps, Chapman and Hall/CRC, FL.
  3. Carr, D. B. and Pierson, S. M. (1996). Emphasizing statistical summaries and showing spatial context with micromaps. Statistical Computing and Graphics Newsletter, 7, 16-23.
  4. Chen, J. X., Carr, D. B., Wechsler, H. and Pan, Z. (2006). Interactive visualization of multivariate statistical data. The International Journal of Virtual Reality, 5, 67-73.
  5. Cho, J. S. (2012). In ow and out ow analysis of double majors using social network analysis. Journal of the Korean Data & Information Science Society, 23, 693-701. https://doi.org/10.7465/jkdi.2012.23.4.693
  6. Cho, J. S. (2014). Analysis of employee's characteristic using data visualization. Journal of the Korean Data & Information Science Society, 25, 727-736. https://doi.org/10.7465/jkdi.2014.25.4.727
  7. Edsall, R. (2003). Design and usability of an enhanced geographic information system for exploration of multivariate health statistics. Professional Geographer, 55, 605-619.
  8. Forman, D. and Bray, F. (2013). GLOBOCAN 2012: Cancer incidence and mortality worldwide, available from http://globocan.iarc.fr.
  9. Gebreab, S., Gillies, R. R., Munger, R, G. and Symanzik, J. (2008). Visualization and interpretation of birth defects data using linked micromap plots. Birth Defects Research (Part A), 82, 110-119. https://doi.org/10.1002/bdra.20419
  10. Ha, I. D. and Noh, M. S. (2013). A visualizing method for investigating individual frailties using frailtyHL R-package. Journal of the Korean Data & Information Science Society, 24, 931-940. https://doi.org/10.7465/jkdi.2013.24.4.931
  11. Han, K. S., Park, S. J., Mun, G. S., Choi, S. H., Symanzik, J., Gebreab, S. and Ahn, J. Y. (2014). Linked micromaps for the visualization of geographically referenced data. ICIC Express Letters, 8, 443-448.
  12. Han, K. Y., Park, S. J. and Ahn, J. Y. (2012). Development of a R function for visualizing statistical information on Google static maps. Journal of the Korean Data & Information Science Society, 23, 971-981. https://doi.org/10.7465/jkdi.2012.23.5.971
  13. Harris, R. L. (1999). Information graphics - A comprehensive illustrated reference, Oxford University Press, New York.
  14. Jung, K. W., Park, S., Kong, H. J., Won, Y. J., Lee, J. Y., Seo, H. G. and Lee, J. S. (2012). Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2009. Cancer Research and Treatment, 44, 11-24. https://doi.org/10.4143/crt.2012.44.1.11
  15. Lee, J. Y., Bae, J. Y., Lee, J. M., Oh, D. Y. and Lee, S. W. (2013). Major gene interactions effect identification on the quality of Hanwoo by radial graph. Journal of the Korean Data & Information Science Society, 24, 151-159. https://doi.org/10.7465/jkdi.2013.24.1.151
  16. Maceachren, A. M., Brewer, C. A. and Pickle L. W. (1998). Visualizing georeferenced data: Representing reliability of health statistics. Environment and Planning A, 30, 1547-1561. https://doi.org/10.1068/a301547
  17. Park, S. J. and Ahn, J. Y. (2013). Visualizing statistical data using linked micromap plots. Journal of The Korean Official Statistics, 18, 111-127.
  18. Pickle, L. W. and Carr, D. B. (2010). Visualizing health data with micromaps. Spatial and Spatio-temporal Epidemiology, 1, 143-150. https://doi.org/10.1016/j.sste.2010.03.007
  19. Symanzik, J. and Carr, D. B. (2008). Interactive linked micromap plots for the display of geographically referenced statistical data. In Handbook of Data Visualization, edited by C. Chen, W. Hardle & A. Unwin, Springer, Heidelberg, Berlin.
  20. Vogelstein, B. and Kinzler, K. W. (2002). The genetic basis of human cancer, McGraw-Hill, New York.
  21. Wong, D. H., Ramadass, S. and Chai, K. (2012). Towards an adaptive framework for network data visualization, ICIC Express Letters, 6, 425-430.
  22. Yoon, S. J., Bae, S. C., Lee, S. I., Chang, H., Jo, H. S., Sung J. H., Park, J. H., Lee, J. Y. and Shin, Y. (2007). Measuring the burden of disease in Korea. Journal of Korean Medical Science, 22, 518-523. https://doi.org/10.3346/jkms.2007.22.3.518

피인용 문헌

  1. Data visualization of airquality data using R software vol.26, pp.2, 2015, https://doi.org/10.7465/jkdi.2015.26.2.399