DOI QR코드

DOI QR Code

Analysis of statistical models on temperature at the Seosan city in Korea

충청남도 서산시 기온의 통계적 모형 연구

  • Lee, Hoonja (Department of Information Statistics, Pyeongtaek University)
  • 이훈자 (평택대학교 디지털응용정보학과)
  • Received : 2014.09.01
  • Accepted : 2014.10.02
  • Published : 2014.11.30

Abstract

The temperature data influences on various policies of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly and seasonal temperature data at the northern part of the Chungcheong Namdo, Seosan monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). The result showed that the monthly ARE model explained about 39-63% for describing the temperature. However, the ARE model will be expected better when we add the more explanatory variables in the model.

기온의 변화는 국가 정책에 여러 가지 영향을 준다. 본 연구에서는 충청남도 서산시 2003년 ~ 2012년 기온을 주위에서 쉽게 구할 수 있는 기상자료, 온실가스자료, 대기자료를 이용하여 자기회귀오차 (autoregressive error)모형으로 월별과 계절별로 분석하였다. 기온을 위한 기상자료로는, 풍속, 강수량, 일사량, 운량, 습도를 사용했고, 온실가스자료는 이산화탄소 ($CO_2$), 메탄 ($CH_4$), 아산화질소 ($N_2O$), 염화불화탄소 ($CFC_{11}$), 대기자료는 미세먼지 ($PM_{10}$), 이산화황 ($SO_2$), 이산화질소 ($NO_2$), 오존 ($O_3$), 일산화탄소 (CO)를 사용하였다. 분석 결과, 자기회귀오차모형으로 월별 기온을 39%-63% 정도 설명할 수 있다.

Keywords

References

  1. Bae, K., Park, J., Kim, J. and Lee, Y. (2013). Analysis of the abstracts of research articles in food related to climate change using a text-mining algorithm. Journal of the Korean Data & Information Science Society, 24, 1429-1437. https://doi.org/10.7465/jkdi.2013.24.6.1429
  2. Cho, S. and Lee, J. (1997). Analysis of economic time series analysis using SAS/ETS, Freedom Academy, Seoul.
  3. Kim, H., Do, H. Y. and Kim, Y. (2013). A modeling of daily temperature in Seoul using GLM weather generator. The Korean Journal of Applied Statistics, 26, 413-420. https://doi.org/10.5351/KJAS.2013.26.3.413
  4. Kim, H. C., Choi, S. K. and Yun, B. R. (2011). A statistical analysis on temperature change and climate variability in Korea. Communications of the Korean Statistical Society, 18, 1-12. https://doi.org/10.5351/CKSS.2011.18.1.001
  5. Kim, H. K. and Lee, Y. (2013). A study on the density analysis of climatological stations using the correlation integral method in the fractal dimension. Journal of the Korean Data & Information Science Society, 24, 53-62. https://doi.org/10.7465/jkdi.2013.24.1.53
  6. Kim, J. S., Lee, J. B. and Lee, J. S. (2008). The status and strategy of climate change watch. Korean Journal of Nature Conversation, 2, 24-31.
  7. Ko, W. K. (2007). Estimation for change of daily maxima temperature. The Korean Journal of Applied Statistics, 20, 1-9. https://doi.org/10.5351/KJAS.2007.20.1.001
  8. Lee, H. (2012). Analysis of time series models for consumer price index. Journal of the Korean Data & Information Science Society, 23, 535-542. https://doi.org/10.7465/jkdi.2012.23.3.535
  9. Song, C. K., Lee, S., and Yoon, J. S. (2011). A review of the integrated strategy for climate change and air pollution management. Journal of Korean Society for Atmospheric Environment, 27, 805-818. https://doi.org/10.5572/KOSAE.2011.27.6.805
  10. Yoo, H. C. and Kang, H. G. (2010). Comparative analysis of temperature change trend and standard meteorological data in Korea over 40 years. Journal of KIAEBS, 4, 97-103.

Cited by

  1. Influenza prediction models by using meteorological and social media informations vol.26, pp.5, 2015, https://doi.org/10.7465/jkdi.2015.26.5.1087
  2. A study on the temperature guidelines for weapon system test and evaluation in the Korean peninsula vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1593
  3. Generating high resolution of daily mean temperature using statistical models vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1215
  4. Analysis of statistical models on temperature at the Suwon city in Korea vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1409
  5. 아파트매매가격지수와 거시경제변수에 관한 시계열모형 연구 vol.28, pp.6, 2014, https://doi.org/10.7465/jkdi.2017.28.6.1471