DOI QR코드

DOI QR Code

A NONCONFORMING PRIMAL MIXED FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS

  • Cho, Sungmin (Department of Mathematics Yonsei University) ;
  • Park, Eun-Jae (Department of Mathematics and Department of Computational Science and Engineering Yonsei University)
  • Received : 2013.09.09
  • Published : 2014.11.30

Abstract

In this article, we propose and analyze a new nonconforming primal mixed finite element method for the stationary Stokes equations. The approximation is based on the pseudostress-velocity formulation. The incompressibility condition is used to eliminate the pressure variable in terms of trace-free pseudostress. The pressure is then computed from a simple post-processing technique. Unique solvability and optimal convergence are proved. Numerical examples are given to illustrate the performance of the method.

Keywords

References

  1. D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Model. Math. Anal. Numer. 19 (1985), no. 1, 7-32.
  2. D. N. Arnold and R. S. Falk, A new mixed formulation for elasticity, Numer. Math. 53 (1988), no. 1-2, 13-30. https://doi.org/10.1007/BF01395876
  3. G. R. Barrenechea and G. N. Gatica, A primal mixed formulation for exterior transmission problems in ${\mathbf{R}}^2$, Numer. Math. 88 (2001), no. 2, 237-253. https://doi.org/10.1007/PL00005444
  4. G. R. Barrenechea, G. N. Gatica, and J.-M. Thomas, Primal mixed formulations for the coupling of FEM and BEM. I. Linear problems, Numer. Funct. Anal. Optim. 19 (1998), no. 1-2, 7-32. https://doi.org/10.1080/01630569808816812
  5. C. Bernardi, V. Girault, and K. R. Rajagopal, Discretization of an unsteady flow through porous solid modeled by Darcy's equations, Math. Models Methods Appl. Sci. 18 (2008), no. 12, 2087-2123. https://doi.org/10.1142/S0218202508003303
  6. D. Braess, Finite Elements, Cambridge University Press, 1997.
  7. D. Braess, Enhanced assumed strain elements and locking in membrane problems, Comput. Methods Appl. Mech. Engrg. 165 (1998), no. 1-4, 155-174. https://doi.org/10.1016/S0045-7825(98)00037-1
  8. D. Braess, C. Carstensen, and B. D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numer. Math. 96 (2004), no. 3, 461-479. https://doi.org/10.1007/s00211-003-0486-5
  9. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Second edition. Texts in Applied Mathematics, 15, Springer-Verlag, New York, 2002.
  10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991.
  11. F. Brezzi, L. D. Marini, and P. Pietra, Two-dimensional exponential fitting and applications to drift-diffusion models, SIAM J. Numer. Anal. 26 (1989), no. 6, 1342-1355 https://doi.org/10.1137/0726078
  12. Z. Cai, B. Lee, and P. Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems, SIAM J. Numer. Anal. 42 (2004), no. 2, 843-859. https://doi.org/10.1137/S0036142903422673
  13. Z. Cai and G. Starke, First-order system least squares for the stress-displacement formulation: linear elasticity, SIAM J. Numer. Anal. 41 (2003), no. 2, 715-730. https://doi.org/10.1137/S003614290139696X
  14. Z. Chen and J. Douglas, Jr, Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems, Mat. Apl. Comput. 10 (1991), no. 2, 137-160.
  15. P. G. Ciarlet, Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
  16. P. Clement, Approximation by finite element functions using local regularization, RAIRO Analyse Numerique 9 (1975), no. R-2, 77-84.
  17. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numer. 7 (1973), no. R-3, 33-75.
  18. M. Gerritsma and T. Phillips, Compatible spectral approximations for the velocity-stress-pressure formulation of the Stokes problem, SIAM J. Numer. Anal. 28 (1991), 591-623. https://doi.org/10.1137/0728033
  19. V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: theory and algorithms, Springer Series in Computational Mathematics 5, 1986.
  20. D. Kim and E.-J. Park, Primal mixed finite-element approximation of elliptic equations with gradient nonlinearities, Comput. Math. Appl. 51 (2006), no. 5, 793-804. https://doi.org/10.1016/j.camwa.2006.03.006
  21. D. Kim and E.-J. Park, A priori and a posteriori analysis of mixed finite element methods for nonlinear elliptic equations, SIAM J. Numer. Anal. 48 (2010), no. 3, 1186-1207. https://doi.org/10.1137/090747002
  22. M. Norburn and D. Silvester, Stable vs. stabilised mixed methods for incompressible flow, Computer Methods in Applied Mechanics and Engineering 166 (1998), 131-141. https://doi.org/10.1016/S0045-7825(98)00087-5
  23. J. Park, A primal mixed domain decomposition procedure based on the nonconforming streamline diffusion method, Appl. Numer. Math. 50 (2004), no. 2, 165-181. https://doi.org/10.1016/j.apnum.2003.12.020
  24. J. E. Roberts and J. M. Thomas, Mixed and Hybrid methods, Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.) Vol II, 523-639, Finite Element Methods (Part 1), North-Holland, Amsterdam, 1989.
  25. J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg. 29 (1990), no. 8, 1595-1638. https://doi.org/10.1002/nme.1620290802
  26. S. T. Yeo and B. C. Lee, Equivalence between enhanced assumed strain method and assumed stress hybrid method based on the Hellinger-Reissner principle, Internat. J. Numer. Methods Engrg. 39 (1996), no. 18, 3083-3099. https://doi.org/10.1002/(SICI)1097-0207(19960930)39:18<3083::AID-NME996>3.0.CO;2-F